1,254 research outputs found

    Assessing the damming effects on runoff using a multiple linear regression model: A case study of the Manwan Dam on the Lancang River

    Get PDF
    AbstractThe Lancang River in Yunnan Province, with a length of 1170km and a 1780-m drop from northwest to southeast, is the most controversial river in southwest China because 14 cascade hydropower stations have been planned on the main waterway. The Manwan Dam, the first of the 14 dams, began operating in 1993, and the associated downstream runoff may have been affected by its construction. To assess this impact, we first investigated the relationships between monthly runoff observed from the Gajiu station and meteorological data obtained from four meteorological gauging stations with a time-lag of 0-3 months over the pre-dam period (1957-2000). Second, we established and validated a multiple linear regression equation employing monthly meteorological and hydrological data during the pre-dam period. Finally, we simulated the monthly runoff after dam construction (1993-2000) using the established equations and assessed the impact of dam construction on runoff by comparing the observed actual monthly runoff with the simulated monthly runoff. Our results suggested a very high hydro-meteorological correlation for the pre-dam period, which opened up the possibility of runoff forecasting. Further, the multiple linear regression equation displayed good simulation performance as coefficient of determination (R2) and the Nash-Suttcliffe coefficient (NS) reached 0.84 and 0.82 respectively. By comparing the observed and the predicted monthly runoff, we found that construction of the Manwan Dam caused a visible disturbance on monthly runoff that, with the disturbance value, displayed a multi-peak fluctuation of up-down variation in the annual hydrologic regime circl

    Models, algorithms and performance analysis for adaptive operating room scheduling

    Get PDF
    The complex optimisation problems arising in the scheduling of operating rooms have received considerable attention in recent scientific literature because of their impact on costs, revenues and patient health. For an important part, the complexity stems from the stochastic nature of the problem. In practice, this stochastic nature often leads to schedule adaptations on the day of schedule execution. While operating room performance is thus importantly affected by such adaptations, decision-making on adaptations is hardly addressed in scientific literature. Building on previous literature on adaptive scheduling, we develop adaptive operating room scheduling models and problems, and analyse the performance of corresponding adaptive scheduling policies. As previously proposed (fully) adaptive scheduling models and policies are infeasible in operating room scheduling practice, we extend adaptive scheduling theory by introducing the novel concept of committing. Moreover, the core of the proposed adaptive policies with committing is formed by a new, exact, pseudo-polynomial algorithm to solve a general class of stochastic knapsack problems. Using these theoretica

    Polarimetric dimension and nonregularity of tightly focused light beams

    Get PDF
    Polarimetric dimension and nonregularity are newly introduced concepts that characterize three-dimensional (3D) polarization states of light. We analyze the spectral polarimetric dimension and the degree of nonregularity associated with two kinds of tightly focused beams: A radially fully polarized Gaussian Schell-model (GSM) beam and a partially polarized beam composed of an incoherent superposition of two orthogonally polarized (coherent) plane-wave modes. We show that for both beams the focal field can exhibit genuine 3D and nonregular character, with even perfect nonregularity encountered for the tightly focused two-mode beam. These features originate from the partial spatial coherence and partial polarization of the incident beams, and in the limit of full coherence and polarization the three-dimensionality and nonregularity of the focal field vanish. We also find that the GSM beam can generate a nanoscale region around the focus where the field is essentially 3D unpolarized. The results demonstrate the rich polarimetric structure of focal fields and may find uses in optical particle manipulation and sensing

    Low-temperature anomalous specific heat without tunneling modes: a simulation for a-Si with voids

    Full text link
    Using empirical potential molecular dynamics we compute dynamical matrix eigenvalues and eigenvectors for a 4096 atom model of amorphous silicon and a set of models with voids of different size based on it. This information is then employed to study the localization properties of the low-energy vibrational states, calculate the specific heat C(T) and examine the low-temperature properties of our models usually attributed to the presence of tunneling states in amorphous silicon. The results of our calculations for C(T) and "excess specific heat bulge" in the C(T)/T^3 vs. T graph for voidless a-Si appear to be in good agreement with experiment; moreover our investigation shows that the presence of localized low-energy excitations in the vibrational spectrum of our models with voids strongly manifests itself as a sharp peak in C(T)/T^3 dependence at T < 3K. To our knowledge this is the first numerical simulation that provides adequate agreement with experiment for the very low-temperature properties of specific heat in disordered systems within the limits of harmonic approximation.Comment: 5 pages with 2 ps figures, submitted to PR

    An iterative deconvolution model to extract the temporal firing properties of the auditory nerve fibers in human eCAPs

    Get PDF
    The electrically evoked compound action potential (eCAP) has been widely studied for its clinical value for the evaluation of the surviving auditory nerve (AN) cells. However, many unknowns remain about the temporal firing properties of the AN fibers that underlie the eCAP in CI recipients. These temporal properties may contain valuable information about the condition of the AN. Here, we propose an iterative deconvolution model for estimating the human evoked unitary response (UR) and for extracting the compound discharge latency distribution (CDLD) from eCAP recordings, under the assumption that all AN fibers have the same UR. In this model, an eCAP is modeled by convolving a parameterized UR and a parameterized CDLD model. Both the UR and CDLD are optimized with an iterative deconvolution fitting error minimization routine to minimize the error between the modeled eCAP and the recorded eCAP.This method first estimates the human UR from eCAP recordings. The human eCAP is unknown at the time of this writing. The UR is subsequently used to extract the underlying temporal neural excitation pattern (the CDLD) that reflects the contributions from individual AN fibers in human eCAPs.By calculating the CDLD, the synchronicity of AN fibers can be evaluated. (C) 2021 The Author(s). Published by Elsevier B.V.Disorders of the head and nec

    Detection of translocation of cochlear implant electrode arrays by intracochlear impedance measurements

    Get PDF
    Objectives: Misplacement of the electrode array is associated with impaired speech perception in patients with cochlear implants (CIs). Translocation of the electrode array is the most common misplacement. When a CI is translocated, it crosses the basilar membrane from the scala tympani into the scala vestibuli. The position of the implant can be determined on a postoperative CT scan. However, such a scan is not obtained routinely after CI insertion in many hospitals, due to radiation exposure and processing time. Previous studies have shown that impedance measures might provide information on the placement of the electrode arrays. The electrode impedance was measured by dividing the plateau voltage at the end of the first phase of the pulse by the injected current. The access resistance was calculated using the so-called access voltage at the first sampled time point after the start of the pulse divided by the injected current. In our study, we obtained the electrode impedance and the access resistance to detect electrode translocations using electrical field imaging. We have investigated how reliably these two measurements can detect electrode translocation, and which method performed best. Design: We calculated the electrode impedances and access resistances using electrical field imaging recordings from 100 HiFocus Mid-Scala CI (Advanced Bionics, Sylmar, CA) recipients. We estimated the normal values of these two measurements as the baselines of the implant placed in the cochlea without translocation. Next, we calculated the maximal electrode impedance deviation and the maximal access-resistance deviation from the respective baselines as predictors of translocation. We classified these two predictors as translocations or nontranslocations based on the bootstrap sampling method and receiver operating characteristics curves analysis. The accuracy could be calculated by comparing those predictive results to a gold standard, namely the clinical CT scans. To determine which measurement more accurately detected translocation, the difference between the accuracies of the two measurements was calculated. Results: Using the bootstrap sampling method and receiver operating characteristics-based optimized threshold criteria, the 95% confidence intervals of the accuracies of translocation detections ranged from 77.8% to 82.1% and from 89.5% to 91.2% for the electrode impedance and access resistance, respectively. The accuracies of the maximal access-resistance deviations were significantly larger than that of the maximal electrode impedance deviations. The location of the translocation as predicted by the access resistance was significantly correlated with the result derived from the CT scans. In contrast, no significant correlation was observed for the electrode impedance. Conclusions: Both the electrode impedance and access resistance proved reliable metrics to detect translocations for HiFocus Mid-Scala electrode arrays. The access resistance had, however, significantly better accuracy and it also reliably detected the electrode-location of translocations. The electrode impedance did not correlate significantly with the location of translocation. Measuring the access resistance is, therefore, the recommended method to detect electrode-array translocations. These measures can provide prompt feedback for surgeons after insertion, improving their surgical skills, and ultimately reducing the number of translocations.In the future, such measurements may allow near-real-time monitoring of the electrode array during insertion, helping to avoid translocations.Neuro Imaging Researc

    Anomalous f_1 exchange in vector meson photoproduction asymmetries

    Get PDF
    We perform an analysis of the elastic production of vector mesons with polarized photon beams at high energy in order to investigate the validity of a recently proposed dynamical mechanism based on the dominance of the f_1 trajectory at large momentum transfer. The density matrix characterizing the angular distributions of the vector meson decays is calculated within an exchange model which includes the Pomeron and the f_1. The asymmetries of these decays turn out to be very useful to disentangle the role of these exchanges since their effect depends crucially on their quantum numbers which are different. The observables analyzed are accessible with present experimental facilities.Comment: 10 pages, REVTeX, 4 figures, some figures are corrected, conclusions unchange

    Features of heavy physics in the CMB power spectrum

    Full text link
    The computation of the primordial power spectrum in multi-field inflation models requires us to correctly account for all relevant interactions between adiabatic and non-adiabatic modes around and after horizon crossing. One specific complication arises from derivative interactions induced by the curvilinear trajectory of the inflaton in a multi-dimensional field space. In this work we compute the power spectrum in general multi-field models and show that certain inflaton trajectories may lead to observationally significant imprints of `heavy' physics in the primordial power spectrum if the inflaton trajectory turns, that is, traverses a bend, sufficiently fast (without interrupting slow roll), even in cases where the normal modes have masses approaching the cutoff of our theory. We emphasise that turning is defined with respect to the geodesics of the sigma model metric, irrespective of whether this is canonical or non-trivial. The imprints generically take the form of damped superimposed oscillations on the power spectrum. In the particular case of two-field models, if one of the fields is sufficiently massive compared to the scale of inflation, we are able to compute an effective low energy theory for the adiabatic mode encapsulating certain relevant operators of the full multi-field dynamics. As expected, a particular characteristic of this effective theory is a modified speed of sound for the adiabatic mode which is a functional of the background inflaton trajectory and the turns traversed during inflation. Hence in addition, we expect non-Gaussian signatures directly related to the features imprinted in the power spectrum.Comment: 41 pages, 6 figures, references updated, minor modifications. Version to appear in JCAP. v4: Equations (4.28) and (4.30) and Figures 5 and 6 correcte
    corecore