567 research outputs found

    W-Particle Distribution in ElectroWeak Tachyonic Pre-Heating

    Full text link
    Results are presented of a numerical study of the distribution of W-bosons generated in a tachyonic electroweak pre-heating transitionComment: Contribution to Strong and ElectroWeak Matter 2002, 5 page

    Interest development: Arousing situational interest affects the growth trajectory of individual interest

    Get PDF
    Interest has become a central topic in the educational-psychology literature and Hidi and Renninger's (2006) four-phase model of interest development is its most recent manifestation. However, this model presently enjoys only limited empirical support. To contribute to our understanding of how individual interest in a subject develops in learners, two studies were conducted with primary school science students. The first study (N = 187) tested the assumption that repeated arousal of situational interest affects the growth of individual interest. Latent growth curve modeling was applied and the results suggest that t

    Epistemic Curiosity and Situational Interest: Distant Cousins or Identical Twins?

    Get PDF
    To what extent are epistemic curiosity and situational interest different indicators for the same underlying psychological mechanism? To answer this question, we conducted two studies. In Study 1, we administered measures of epistemic curiosity and situational interest to 158 students from an all-boys secondary school. The data were analyzed using confirmatory factor analysis to find out whether a one-factor or a two-factor solution provides the best fit to the data. The findings supported a one-factor solution. A two-factor solution was only satisfactorily supported if one accepted that the two latent constructs were correlated.99. Study 2 was an experiment in which we experimentally manipulated the amount of prior knowledge 148 students had about a particular thermodynamic phenomenon. Epistemic curiosity and situational interest were each measured four times: before a text was studied, before and after a problem was presented, and after a second text was read. The treatment group studied a text explaining the problem after the problem was presented, whereas the control group read it before the problem was presented. The control group, in other words, gained prior knowledge about the problem. In the treatment group, both epistemic curiosity and situational interest significantly increased while being confronted with the problem. This was not the case in the control group. In addition, only in the treatment group scores on both measures significantly decreased after the text explaining the problem was studied. These findings support a knowledge gap account of both situational interest and epistemic curiosity, suggesting an identical underlying psychological mechanism

    Sympathetic cooling of 9Be+^9Be^+ and 24Mg+^{24}Mg^+ for quantum logic

    Full text link
    We demonstrate the cooling of a two species ion crystal consisting of one 9Be+^9Be^+ and one 24Mg+^{24}Mg^+ ion. Since the respective cooling transitions of these two species are separated by more than 30 nm, laser manipulation of one ion has negligible effect on the other even when the ions are not individually addressed. As such this is a useful system for re-initializing the motional state in an ion trap quantum computer without affecting the qubit information. Additionally, we have found that the mass difference between ions enables a novel method for detecting and subsequently eliminating the effects of radio frequency (RF) micro-motion.Comment: Submitted to PR

    Cooling atomic motion with quantum interference

    Get PDF
    We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal degrees of freedom are driven in a Λ\Lambda-shaped configuration with the lasers tuned at two-photon resonance. In the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelenght, transient coherent population trapping occurs, cancelling transitions at the laser frequency. In this limit the motion can be efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical background of the scheme presented in [G. Morigi {\it et al}, Phys. Rev. Lett. {\bf 85}, 4458 (2000)] and implemented in [C.F. Roos {\it et al}, Phys. Rev. Lett. {\bf 85}, 5547 (2000)]. We discuss the physical mechanisms determining the dynamics and identify new parameters regimes, where cooling is efficient. We discuss implementations of the scheme to cases where the trapping potential is not harmonic.Comment: 11 pages, 3 figure

    1/N_c- expansion of the quark condensate at finite temperature

    Get PDF
    Previously the quark and meson properties in a many quark system at finite temperature have been studied within effective QCD approaches in the Hartree approximation. In the present paper we consider the influence of the mesonic correlations on the quark self-energy and on the quark propagator within a systematic 1/Nc1/N_c- expansion. Using a general separable ansatz for the nonlocal interaction, we derive a selfconsistent equation for the 1/Nc1/N_c correction to the quark propagator. For a separable model with cut-off formfactor, we obtain a decrease of the condensate of the order of 20\% at zero temperature. A lowering the critical temperature for the onset of the chiral restoration transition due to the inclusion of mesonic correlations is obtained what seems to be closer to the results from lattice calculations.Comment: 19 pages, REVTeX, 5 figure

    Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit

    Full text link
    We propose a simple scheme for implementing quantum logic gates with a string of two-level trapped cold ions outside the Lamb-Dicke limit. Two internal states of each ion are used as one computational qubit (CQ) and the collective vibration of ions acts as the information bus, i.e., bus qubit (BQ). Using the quantum dynamics for the laser-ion interaction as described by a generalized Jaynes-Cummings model, we show that quantum entanglement between any one CQ and the BQ can be coherently manipulated by applying classical laser beams. As a result, universal quantum gates, i.e. the one-qubit rotation and two-qubit controlled gates, can be implemented exactly. The required experimental parameters for the implementation, including the Lamb-Dicke (LD) parameter and the durations of the applied laser pulses, are derived. Neither the LD approximation for the laser-ion interaction nor the auxiliary atomic level is needed in the present scheme.Comment: 12 pages, no figures, to appear in Phys. Rev.

    Functional architecture of the rat parasubiculum

    Get PDF
    The parasubiculum is a major input structure of layer 2 of medial entorhinal cortex, where most grid cells are found. Here we investigated parasubicular circuits of the rat by anatomical analysis combined with juxtacellular recording/labeling and tetrode recordings during spatial exploration. In tangential sections, the parasubiculum appears as a linear structure flanking the medial entorhinal cortex mediodorsally. With a length of ∼5.2 mm and a width of only ∼0.3 mm (approximately one dendritic tree diameter), the parasubiculum is both one of the longest and narrowest cortical structures. Parasubicular neurons span the height of cortical layers 2 and 3, and we observed no obvious association of deep layers to this structure. The "superficial parasubiculum" (layers 2 and 1) divides into ∼15 patches, whereas deeper parasubicular sections (layer 3) form a continuous band of neurons. Anterograde tracing experiments show that parasubicular neurons extend long "circumcurrent" axons establishing a "global" internal connectivity. The parasubiculum is a prime target of GABAergic and cholinergic medial septal inputs. Other input structures include the subiculum, presubiculum, and anterior thalamus. Functional analysis of identified and unidentified parasubicular neurons shows strong theta rhythmicity of spiking, a large fraction of head-direction selectivity (50%, 34 of 68), and spatial responses (grid, border and irregular spatial cells, 57%, 39 of 68). Parasubicular output preferentially targets patches of calbindin-positive pyramidal neurons in layer 2 of medial entorhinal cortex, which might be relevant for grid cell function. These findings suggest the parasubiculum might shape entorhinal theta rhythmicity and the (dorsoventral) integration of information across grid scales

    Raman spectroscopy of a single ion coupled to a high-finesse cavity

    Full text link
    We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.Comment: 8 pages, 6 figure

    Phase Coherence and Control of Stored Photonic Information

    Get PDF
    We report the demonstration of phase coherence and control for the recently developed "light storage" technique. Specifically, we use a pulsed magnetic field to vary the phase of atomic spin excitations which result from the deceleration and storing of a light pulse in warm Rb vapor. We then convert the spin excitations back into light and detect the resultant phase shift in an optical interferometric measurement. The coherent storage of photon states in matter is essential for the practical realization of many basic concepts in quantum information processing.Comment: 5 pages, 3 figures. Submitted to Phys. Rev. Let
    corecore