624 research outputs found

    Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance?

    Get PDF
    Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on mediolateral balance are reduced by explicit visual feedback on mediolateral sway of the body center of mass and by the presence of visual information. We manipulated sensory inputs of the somatosensory system by transcutaneous electric nerve stimulation on the feet soles (TENS) of the vestibular system by galvanic vestibular stimulation (GVS) and of the proprioceptive system by muscle-tendon vibration (VMS) of hip abductors. The effects of these manipulations on mediolateral sway were compared with a control condition without manipulation under three visual conditions: explicit feedback of sway of the body center of mass (FB), eyes open (EO), and eyes closed (EC). Mediolateral sway was quantified as the sum of energies in the power spectrum and as the energy at the dominant frequencies in each of the manipulation signals. Repeated-measures ANOVAs were used to test effects of each of the sensory manipulations, of visual conditions and their interaction. Overall, sensory manipulations increased body sway compared with the control conditions. Absence of normal visual information had no effect on sway, while explicit feedback reduced sway. Furthermore, interactions of visual information and sensory manipulation were found at specific dominant frequencies for GVS and VMS, with explicit feedback reducing the effects of the manipulations but not effacing these

    Mediolateral balance and gait stability in older adults.

    Get PDF
    Early detection of balance impairment is crucial to identify individuals who may benefit from interventions aimed to prevent falls, which is a major problem in aging societies. Since mediolateral balance deteriorates with aging, we proposed a mediolateral balance assessment (MELBA) tool that uses a CoM-tracking task of predictable sinusoidal and unpredictable multisine targets. This method has shown to be reliable and sensitive to aging effect, however, it is not known whether it can predict performance on common daily-life tasks such as walking. This study aimed to determine whether MELBA is an ecologically valid tool by correlating its outputs with a measure of mediolateral gait stability known to be predictive of falls.Nineteen community-dwelling older adults (72±5 years) tracked predictable and unpredictable target displacements at increasing frequencies with their CoM by shifting their weight sideward. Response delay (phase-shift) and amplitude difference (gain) between the CoM and target in the frequency domain were used to quantify performance. To assess gait stability, the local divergence exponent was calculated using mediolateral accelerations with an inertial sensor when walking on a treadmill (LD

    The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis

    Full text link
    We review recent lattice QCD results for the surface tension at the finite temperature quark-hadron phase transition and discuss their implications on the possible scale of inhomogeneities. In the quenched approximation the average distance between nucleating centers is smaller than the diffusion length of a protron, so that inhomogeneities are washed out by the time nucleosynthesis sets in. Consequently the baryon density fluctuations formed by a QCD phase transition in the early universe cannot significantly affect standard big-bang nucleosynthesis calculations and certainly cannot allow baryons to close the universe. At present lattice results are inconclusive when dynamical fermions are included.Comment: 8 pages, LaTe

    Present status of IGEX dark matter search at Canfranc Underground Laboratory

    Get PDF
    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored.Comment: 3 pages, 3 figures, talk delivered at the 7th International Workshop on Topics in Astroparticle and Underground Physics (TAUP 2001), September 2001, Laboratori Nazionali del Gran Sasso, Italy (to appear in the Conference Proceedings, Nucl. Phys. B (Proc. Suppl.)

    Metacognition and lifelong e-learning: a contextual and cyclical process

    Get PDF
    Metacognition is arguably an important conceptualisation within the area of lifelong e- learning, with many theorists and practitioners claiming that it enhances the learning process. However, the lifelong, cyclical and flexible aspects of 'before', 'during' and 'after' metacognitions within lifelong e-learning (inclusive of whether an 'input' necessarily leads to a completed 'output') seem marginal within current areas of practical and theoretical debate. This article analyses Reeves's (1997) model of web-based learning in the context of the ADAPT project; a study of lifelong learners based in small and medium sized enterprises. The article focuses upon an analysis of this model's view of metacognition, and in the light of the project findings and literature review, aims to put forward an extended and expanded version of the model with reference to lifelong e-learnin

    Improved constraints on WIMPs from the International Germanium Experiment IGEX

    Get PDF
    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot, has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold E \~ 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored.Comment: 14 pages, 8 figures, submitted to Physics Letters B (revised version after referee's comments, some figures added

    New constraints on WIMPs from the Canfranc IGEX dark matter search

    Get PDF
    The IGEX Collaboration enriched 76Ge double-beta decay detectors are currently operating in the Canfranc Underground Laboratory with an overburden of 2450 m.w.e. A recent upgrade has made it possible to use them in a search for WIMPs. A new exclusion plot has been derived for WIMP-nucleon spin-independent interaction. To obtain this result, 30 days of data from one IGEX detector, which has an energy threshold of ~4 keV, have been considered. These data improve the exclusion limits derived from other germanium diode experiments in the ~50 GeV DAMA region, and show that with a moderate improvement of the background below 10 keV, the DAMA region may be tested with an additional 1 kg-year of exposure.Comment: 7 pages, 2 figures, submitted to Physics Letter

    Pulse Shape Discrimination in the IGEX Experiment

    Get PDF
    The IGEX experiment has been operating enriched germanium detectors in the Canfranc Underground Laboratory (Spain) in a search for the neutrinoless double decay of 76Ge. The implementation of Pulse Shape Discrimination techniques to reduce the radioactive background is described in detail. This analysis has been applied to a fraction of the IGEX data, leading to a rejection of ~60 % of their background, in the region of interest (from 2 to 2.5 MeV), down to ~0.09 c/(keV kg y).Comment: 18 pages, 10 figure

    Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities

    Full text link
    The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis

    Search for an annual modulation of dark-matter signals with a germanium spectrometer at the Sierra Grande Laboratory

    Get PDF
    Data collected during three years with a germanium spectrometer at the Sierra Grande underground laboratory have been analyzed for distinctive features of annual modulation of the signal induced by WIMP dark matter candidates. The main motivation for this analysis was the recent suggestion by the DAMA/NaI Collaboration that a yearly modulation signal could not be rejected at the 90% confidence level when analyzing data obtained with a high-mass low-background scintillator detector. We performed two different analyses of the data: First, the statistical distribution of modulation-significance variables (expected from an experiment running under the conditions of Sierra Grande) was compared with the same variables obtained from the data. Second, the data were analyzed in energy bins as an independent check of the first result and to allow for the possibility of a crossover in the expected signal. In both cases no statistically significant deviation from the null result was found, which could support the hypothesis that the data contain a modulated component. A plot is also presented to enable the comparison of these results to those of the DAMA collaboration.Comment: New version accepted by Astroparticle Physics. Changes suggested by the referee about the theoretical prediction of rates are included. Conclusions remain unaffected. 14 pages, LaTeX, 7 figures. Uses epsfig macr
    corecore