232 research outputs found

    Perioperative complications among head and neck surgery patients with COVID-19

    Get PDF
    Background: Patients undergoing surgery for head and neck cancer (HNC) have potentially high perioperative complication rates. Recent studies indicate that preoperative COVID-19 infection poses increased risk for postoperative complications in other fields. However, to date, there has not been data showing the effect of COVID-19 on complication rates for HNC. Here, a large database was employed to assess if perioperative COVID-19 increased the risk of perioperative complications among those undergoing HNC surgery. Methods: A retrospective investigation was conducted using a multi-institutional research database. Subjects who underwent HNC surgery from January 2020 to September 2022 were identified using the International Classification of Diseases and Current Procedure Terminology codes. Thirty-day surgical and medical complications were assessed for those diagnosed with COVID-19 infection from 7 days before or after surgery compared to those who were COVID-19 negative. Cohorts were propensity scores matched by age, sex, and race. Results: Perioperative COVID-19 was present in n = 208 and absent in n = 15 158 subjects that underwent HNC surgery. For unmatched analyses, there was a statistically significant increased risk in the 30-day postoperative period in COVID-19-positive patients for the following surgical complications: surgical site fistula, free tissue transfer (FTT) complication, FTT failure, and death. Additionally, there was a statistically significant increased risk in the 30-day postoperative period in COVID-19-positive patients for the following medical complications: ventilator support, pneumonia, vasopressor, acute renal failure, and myocardial infarction. Conclusion: This large, retrospective populational study suggests HNC patients are at increased risk for death and several perioperative complications. This investigation is the first to address this clinical question

    Levels of hexabromocyclododecane in harbor porpoises and common dolphins from Western European seas, with evidence for stereoisomer-specific biotransformation by cytochrome P450

    Get PDF
    Commercial hexabromocyclododecane (HBCD) is a high-production-volume flame-retardant applied in polystyrene foams. It contains three stereoisomers, of which Îł-HBCD always dominates. Here we report on the levels of HBCD in blubber of harbor porpoise and common dolphin from different European seas. The highest total (ÎŁ)-HBCD levels were measured in harbor porpoises stranded on the Irish and Scottish coasts of the Irish Sea (median concentration 2.9 ÎŒg (g of lipid

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Determination of Fundamental Supersymmetry Parameters from Chargino Production at Lepii

    Get PDF
    If accessible at LEP II, chargino production is likely to be one of the few available supersymmetric signals for many years. We consider the prospects for the determination of fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. We propose a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. Working in the context of the minimal supersymmetric standard model, we find that chargino production by itself is a fairly sensitive probe of the supersymmetry-breaking sector. For significant regions of parameter space, it is possible to test the gaugino mass unification hypothesis and to measure the gaugino contents of the charginos and neutralinos, thereby testing the predictions of grand unification and the viability of the lightest supersymmetric particle as a dark matter candidate. For much of the parameter space, it is also possible to set limits on the mass of the electron sneutrino, which provide a valuable guide for future particle searches.Comment: 52pp, Revtex, 30 figures available upon request, SLAC-PUB-6497, RU-94-67 (text and figures available in ps form by anonymous ftp from preprint.slac.stanford.edu, directory pub/preprints/hep-ph/9408

    Optical Light Curves of Supernovae

    Full text link
    Photometry is the most easily acquired information about supernovae. The light curves constructed from regular imaging provide signatures not only for the energy input, the radiation escape, the local environment and the progenitor stars, but also for the intervening dust. They are the main tool for the use of supernovae as distance indicators through the determination of the luminosity. The light curve of SN 1987A still is the richest and longest observed example for a core-collapse supernova. Despite the peculiar nature of this object, as explosion of a blue supergiant, it displayed all the characteristics of Type II supernovae. The light curves of Type Ib/c supernovae are more homogeneous, but still display the signatures of explosions in massive stars, among them early interaction with their circumstellar material. Wrinkles in the near-uniform appearance of thermonuclear (Type Ia) supernovae have emerged during the past decade. Subtle differences have been observed especially at near-infrared wavelengths. Interestingly, the light curve shapes appear to correlate with a variety of other characteristics of these supernovae. The construction of bolometric light curves provides the most direct link to theoretical predictions and can yield sorely needed constraints for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes in Physics (http://link.springer.de/series/lnpp

    Refining Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Genetic Loci by Integrating Summary Data From Genome-wide Association, Gene Expression, and DNA Methylation Studies

    Get PDF
    Background: Recent genome-wide association studies (GWASs) identified the first genetic loci associated with attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these results to increase our understanding of the biological mechanisms involved. Most of the identified variants likely influence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels. Methods: We applied summary-data–based Mendelian randomization to integrate ADHD and ASD GWAS data with fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide increased statistical power. We subsequently used summary-data–based Mendelian randomization to investigate if the same variant influences both DNAm and gene expression levels. Results: We identified multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because of increased statistical power. Several of the associated genes have not been identified in ADHD and ASD GWASs before. Conclusions: Our findings identified the genetic variants associated with ADHD and ASD that likely act through gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies
    • 

    corecore