1,225 research outputs found

    Testing and Evaluation of Lithium-Ion Batteries for LEO Space Missions

    Get PDF
    In 1990, Sony Corporation announced their intention to manufacture a rechargeable lithium ion battery, based on the highly reversible intercalation of lithium ions into the carbonaceous anode and metal oxide cathode. The cells were first introduced for portable telephone use in June, 1991. Since that time, other Japanese companies have indicated their plans to manufacture lithium-ion batteries. A copy of Sony\u27s initial specifications are attached to this report in Appendix A, and are summarized below

    Eclipsing Binaries with Possible Light-Time Effect

    Full text link
    The period changes of six eclipsing binaries have been studied with focus on the light-time effect. With the least squares method we also calculated parameters of such an effect and properties of the unresolved body in these systems. With these results we discussed the probability of presence of such bodies in the systems with respect to possible confirmation by another method. In two systems we also suggested the hypothesis of fourth body or magnetic activity for explanation of the "second-order variability" after subtraction of the light-time effect of the third body.Comment: 4 pages, 1 figure, 2 tables, conference proceeding

    Extension of the sum rule for the transition rates between multiplets to the multiphoton case

    Full text link
    The sum rule for the transition rates between the components of two multiplets, known for the one-photon transitions, is extended to the multiphoton transitions in hydrogen and hydrogen-like ions. As an example the transitions 3p-2p, 4p-3p and 4d-3d are considered. The numerical results are compared with previous calculations.Comment: 10 pages, 4 table

    Influence of piston position on the scavenging and swirling flow in two-stroke Diesel engines

    Get PDF
    We study the e ect of piston position on the in-cylinder swirling ow in a low speed large two-stroke marine diesel engine model. We are using Large Eddy Simulations in OpenFOAM, with three di erent models for the turbulent ow: a one equation model (OEM), a dynamic one equation model (DOEM) and Ta Phuoc Loc's model (TPLM). The simulated ows are grid-independent and they are computed in situations analogous to two di erent piston positions where the air intake ports are uncovered 100% and 50%, respectively. We nd that the average ow inside the cylinder changes qualitatively with port closure from a Burgers vortex pro le to a solid body rotation while the axial velocity changes from a wake-like pro le to a jet-like pro le. The numerical results are compared with measurements in a similar geometry [3] and we nd a good agreement between simulations and measurements. Furthermore, we consider the unsteady ow and identify a dominant frequency in a power spectrum based on velocity which we show is due to precession of the vortex core, and compare with measurements of the unsteady ow obtained with Laser Doppler Anemometry

    First results of the air shower experiment KASCADE

    Full text link
    The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector) experiment are the determination of the energy spectrum and elemental composition of the charged cosmic rays in the energy range around the knee at ca. 5 PeV. Due to the large number of measured observables per single shower a variety of different approaches are applied to the data, preferably on an event-by-event basis. First results are presented and the influence of the high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings, Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D. Vignau

    Electron, Muon, and Hadron Lateral Distributions Measured in Air-Showers by the KASCADE Experiment

    Full text link
    Measurements of electron, muon, and hadron lateral distributions of extensive air showers as recorded by the KASCADE experiment are presented. The data cover the energy range from about 5x10^14 eV up to almost 10^17 eV and extend from the inner core region to distances of 200 m. The electron and muon distributions are corrected for mutual contaminations by taking into account the detector properties in the experiment. All distributions are well described by NKG-functions. The scale radii describing the electron and hadron data best are approx. 30 m and 10 m, respectively. We discuss the correlation between scale radii and `age' parameter as well as their dependence on shower size, zenith angle, and particle energy threshold.Comment: 28 pages, 14 figures, Accepted for publication in Astroparticle Physic

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Characterisation of spin coated engineered <i>Escherichia coli</i> biofilms using atomic force microscopy

    Get PDF
    The ability of biofilms to withstand chemical and physical extremes gives them the potential to be developed as robust biocatalysts. Critical to this issue is their capacity to withstand the physical environment within a bioreactor; in order to assess this capability knowledge of their surface properties and adhesive strength is required. Novel atomic force microscopy experiments conducted under growth conditions (30° C) were used to characterise Escherichia coli biofilms, which were generated by a recently developed spin-coating method onto a poly-L-lysine coated glass substrate. High-resolution topographical images were obtained throughout the course of biofilm development, quantifying the tip-cell interaction force during the 10 day maturation process. Strikingly, the adhesion force between the Si AFM tip and the biofilm surface increased from 0.8 nN to 40 nN within 3 days. This was most likely due to the production of extracellular polymer substance (EPS), over the maturation period, which was also observed by electron microscopy. At later stages of maturation, multiple retraction events were also identified corresponding to biofilm surface features thought to be EPS components. The spin coated biofilms were shown to have stronger surface adhesion than an equivalent conventionally grown biofilm on the same glass substrate
    corecore