2,399 research outputs found
Calculation of near-tip non-singular stresses for pressurized cracks
AbstractWhen the crack surfaces are traction-free, there is only one constant term T in the near-tip stress field, which contributes uniformly to the stress component acting in the direction parallel to the crack flank. As to pressurized cracks, the non-singular part of the asymptotic stresses appears to be more complicated and is no longer characterized only by the constant T. In this work, an effective numerical approach is developed for calculation of the non-singular parts of the asymptotic near-tip stresses under the action of nonuniform crack surface pressures. With this approach, the near-tip non-singular stress field can be accurately evaluated by direct use of regular numerical methods such as finite elements
Cosmological Constraints on the Sign-Changeable Interactions
Recently, Cai and Su [Phys. Rev. D {\bf 81}, 103514 (2010)] found that the
sign of interaction in the dark sector changed in the approximate redshift
range of 0.45\,\lsim\, z\,\lsim\, 0.9, by using a model-independent method to
deal with the observational data. In fact, this result raises a remarkable
problem, since most of the familiar interactions cannot change their signs in
the whole cosmic history. Motivated by the work of Cai and Su, we have proposed
a new type of interaction in a previous work [H. Wei, Nucl. Phys. B {\bf 845},
381 (2011)]. The key ingredient is the deceleration parameter in the
interaction , and hence the interaction can change its sign when our
universe changes from deceleration () to acceleration (). In the
present work, we consider the cosmological constraints on this new type of
sign-changeable interactions, by using the latest observational data. We find
that the cosmological constraints on the model parameters are fairly tight. In
particular, the key parameter can be constrained to a narrow range.Comment: 15 pages, 1 table, 8 figures, revtex4; v2: published versio
A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body
The issue of the inviscid limit for the incompressible Navier-Stokes
equations when a no-slip condition is prescribed on the boundary is a famous
open problem. A result by Tosio Kato says that convergence to the Euler
equations holds true in the energy space if and only if the energy dissipation
rate of the viscous flow in a boundary layer of width proportional to the
viscosity vanishes. Of course, if one considers the motion of a solid body in
an incompressible fluid, with a no-slip condition at the interface, the issue
of the inviscid limit is as least as difficult. However it is not clear if the
additional difficulties linked to the body's dynamic make this issue more
difficult or not. In this paper we consider the motion of a rigid body in an
incompressible fluid occupying the complementary set in the space and we prove
that a Kato type condition implies the convergence of the fluid velocity and of
the body velocity as well, what seems to indicate that an answer in the case of
a fixed boundary could also bring an answer to the case where there is a moving
body in the fluid
Regulator constants and the parity conjecture
The p-parity conjecture for twists of elliptic curves relates multiplicities
of Artin representations in p-infinity Selmer groups to root numbers. In this
paper we prove this conjecture for a class of such twists. For example, if E/Q
is semistable at 2 and 3, K/Q is abelian and K^\infty is its maximal pro-p
extension, then the p-parity conjecture holds for twists of E by all orthogonal
Artin representations of Gal(K^\infty/Q). We also give analogous results when
K/Q is non-abelian, the base field is not Q and E is replaced by an abelian
variety. The heart of the paper is a study of relations between permutation
representations of finite groups, their "regulator constants", and
compatibility between local root numbers and local Tamagawa numbers of abelian
varieties in such relations.Comment: 50 pages; minor corrections; final version, to appear in Invent. Mat
Bulk experimental evidence of half-metallic ferromagnetism in doped manganites
We report precise measurements and quantitative data analysis on the
low-temperature resistivity of several ferromagnetic manganite films. We
clearly show that there exists a T^{4.5} term in low-temperature resistivity,
and that this term is in quantitative agreement with the quantum theory of
two-magnon scattering for half metallic ferromagnets. Our present results
provide the first bulk experimental evidence of half-metallic ferromagnetism in
doped manganites.Comment: 4 pages, 4 figure
Colossal magnetooptical conductivity in doped manganites
We show that the current carrier density collapse in doped manganites, which
results from bipolaron formation in the paramagnetic phase, leads to a colossal
change of the optical conductivity in an external magnetic field at
temperatures close to the ferromagnetic transition. As with the colossal
magnetoresistance (CMR) itself, the corresponding magnetooptical effect is
explained by the dissociation of localized bipolarons into mobile polarons
owing to the exchange interaction with the localized Mn spins in the
ferromagnetic phase. The effect is positive at low frequencies and negative in
the high-frequency region. The present results agree with available
experimental observations.Comment: 4 pages, REVTeX 3.0, two eps-figures included in the tex
Entanglement Sudden Death in Band Gaps
Using the pseudomode method, we evaluate exactly time-dependent entanglement
for two independent qubits, each coupled to a non-Markovian structured
environment. Our results suggest a possible way to control entanglement sudden
death by modifying the qubit-pseudomode detuning and the spectrum of the
reservoirs. Particularly, in environments structured by a model of a
density-of-states gap which has two poles, entanglement trapping and prevention
of entanglement sudden death occur in the weak-coupling regime
Rotor shaping method for torque ripple mitigation in variable flux reluctance machines
In this paper, four rotor shaping methods, i.e., eccentric circular, inverse cosine, inverse cosine with third harmonic, and multi-step shaping methods, are developed and compared for torque ripple mitigation in variable flux reluctance machines (VFRMs). By using a 6-stator-pole/7-rotor-pole (6/7) VFRM as an example, the design criterions and capabilities of these four methods are illustrated. It is found that all the rotor shaping methods are capable of torque ripple mitigation and applicable to all the VFRMs except those with 6 k /(6 i ± 2) k ( k , i = 1, 2, 3…) stator/rotor pole combinations. Moreover, the inverse cosine with third harmonic and multi-step shaping methods are found to have the best performance. They are able to reduce the torque ripple by 90% at a cost of only 3% torque density reduction. A 6/7 VFRM with both conventional and shaped rotors is prototyped and tested for verification
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
proBDNF inhibits the proliferation and migration of OLN-93 oligodendrocytes
In contrast with mature brain‑derived neurotrophic factor (mBDNF), proBDNF induces cell apoptosis. However, the function of proBDNF in oligodendrocytes remains unclear. In the present study, the OLN‑93 oligodendroglia cell line was utilized as an in vitro model to analyse the functions of proBDNF in oligodendroglia. p75NTR, sortilin and proBDNF were expressed in cultured OLN‑93 cells. It was indicated that proBDNF inhibited OLN‑93 cell proliferation in a dose‑dependent manner as determined using the MTT assay and BrdU staining. Furthermore, proBDNF suppressed the migration of OLN‑93 cells as demonstrated using the scratch assay. proBDNF also decreased cell viability and promoted apoptosis as indicated by activated cysteine‑aspartic acid protease‑3 (caspase‑3) immunocytochemistry. Notably, anti‑proBDNF treatment neutralized the effect of proBDNF and resulted in increased cell proliferation and migration and decreased apoptosis. However, these effects were not observed in the presence of recombinant p75NTR extracellular domain‑human FC fusion protein and p75NTR antibody, indicating that proBDNF imparts its inhibitory effects on oligodendrocytes through the p75NTR signal pathway.Shen Liu, Wei Guo, Hengxing Zhou, Liang Tang, Shiqing Feng, Jin-Hua Zhong, and Xi- Fu Zho
- …