1,438 research outputs found

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States, and Hierarchy

    Full text link
    We present three holographic constructions of fractional quantum Hall effect (FQHE) via string theory. The first model studies edge states in FQHE using supersymmetric domain walls in N=6 Chern-Simons theory. We show that D4-branes wrapped on CP^1 or D8-branes wrapped on CP^3 create edge states that shift the rank or the level of the gauge group, respectively. These holographic edge states correctly reproduce the Hall conductivity. The second model presents a holographic dual to the pure U(N)_k (Yang-Mills-)Chern-Simons theory based on a D3-D7 system. Its holography is equivalent to the level-rank duality, which enables us to compute the Hall conductivity and the topological entanglement entropy. The third model introduces the first string theory embedding of hierarchical FQHEs, using IIA string on C^2/Z_n.Comment: 36 pages, 6 figures; v2: with an improved derivation of Hall conductivity in section 3.2, typo corrections, and additional references; v3: explanations and comments adde

    Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited

    Full text link
    Several exoplanets have been detected towards the Galactic bulge with the microlensing technique. We show that exoplanets in M31 may also be detected with the pixel-lensing method, if telescopes making high cadence observations of an ongoing microlensing event are used. Using a Monte Carlo approach we find that the mean mass for detectable planetary systems is about 2MJ2 M_{\rm {J}}. However, even small mass exoplanets (MP<20M⊕M_{\rm P} < 20 M_{\oplus}) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced with respect to that evaluated for all planetary detectable events.Comment: 14 pages, 8 figures. Paper presented at the "II Italian-Pakistani Workshop on Relativistic Astrophysics, Pescara, July 8-10, 2009. To be published in a special issue of General Relativity and Gravitation (eds. F. De Paolis, G.F.R. Ellis, A. Qadir and R. Ruffini

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys

    Get PDF
    Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)

    Lithospheric dripping in a soft collision zone: Insights from late Paleozoic magmatism suites of the eastern Central Asian Orogenic Belt

    Get PDF
    The closure of Paleo-Asian Ocean is considered to have occurred along the Solonker Suture in the southernmost segment of the Central Asian Orogenic Belt (CAOB), the largest Phanerozoic accretionary orogen on the globe. The suture branches to the east to form the northern Hegenshan–Heihe Suture and the southern Solonker–Changchun Suture. The Hegenshan–Heihe Suture is an ideal natural laboratory for studying the post-collisional geodynamic processes operating in a soft collision zone driven by divergent double-sided subduction. Here we report results from an integrated study of the petrology, geochronology, geochemistry, and Sr–Nd–Hf isotopic compositions of the Early Carboniferous–Early Permian magmatic suite in the Hailar Basin of the Xing’an–Erguna Block. The Early Carboniferous igneous rocks are represented by 356–349 Ma andesitic tuffs, exhibiting typical subduction-related features, such as enrichment in large-ion lithophile elements and depletion in high-field-strength elements. These features, together with the relatively depleted Sr–Nd–Hf isotopic compositions, constant Nb/Y values, but highly variable Rb/Y and Ba values indicate that these rocks were generated by partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The Late Carboniferous–Early Permian magmatic suite (317–295 Ma) is characterized by high Sr contents (313–1080 ppm) and low Y contents (5–13 ppm), and these can be subdivided into calc-alkaline adakitic rocks and high-K calc-alkaline adakitic rocks. The calc-alkaline adakitic rocks have higher values of Sr/Y, (Sm/Yb)source normalized, and Mg#, and lower values of Y, Ybsource normalized, and K2O/Na2O than the high-K calc-alkaline adakitic rocks, which suggests that the former was generated by partial melting of foundered lower continental crust and the latter by partial melting of normal lower continental crust. Based on our new data, in conjunction with those in previous studies, we conclude that the tectonic evolution of the Hegenshan–Heihe Suture involved Early Carboniferous double-sided subduction of the Nenjiang Ocean, latest Early Carboniferous soft collision between the Xing’an–Erguna and Songliao blocks, and Late Carboniferous– Early Permian post-collisional extension. We also propose a new geodynamic scenario in which removal of the lithospheric root might have occurred in a soft collision zone during the post-collision period via repeated and localized lithospheric dripping, which results from combined effects of hydration weakening of the lithosphere caused by pre-collision subduction and asthenospheric stirring triggered by slab break-off.Zheng Ji, Wen-Chun Ge, M. Santosh, Chuan-Biao Wan, Yan-Long Zhang, Jun-Hui Bi, Hao Yang, Yu Dong, Yan Jin

    Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects

    Get PDF
    Poly (lactic acid) (PLA)/halloysite nanotube (HNT) composite fibres were prepared by using a simple and versatile electrospinning technique. The systematic approach via Taguchi design of experiments (DoE) was implemented to investigate factorial effects of applied voltage, feed rate of solution, collector distance and HNT concentration on the fibre diameter, HNT non-intercalation and nucleation effects. The HNT intercalation level, composite fibre morphology, their associated fibre diameter and thermal properties were evaluated by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), imaging analysis and differential scanning calorimetry (DSC), respectively. HNT non-intercalation phenomenon appears to be manifested as reflected by the minimal shift of XRD peaks for all electrospun PLA/HNT composite fibres. The smaller-fibre-diameter characteristic was found to be sequentially associated with the feed rate of solution, collector distance and applied voltage. The glass transition temperature (T g) and melting temperature (T m) are not highly affected by varying the material and electrospinning parameters. However, as the indicator of the nucleation effect, the crystallisation temperature (T c) of PLA/HNT composite fibres is predominantly impacted by HNT concentration and applied voltage. It is evident that HNT’s nucleating agent role is confirmed when embedded with HNTs to accelerate the cold crystallisation of composite fibres. Taguchi DoE method has been found to be an effective approach to statistically optimise critical parameters used in electrospinning in order to effectively tailor the resulting physical features and thermal properties of PLA/HNT composite fibres

    Measurement of K^+K^- production in two-photon collisions in the resonant-mass region

    Full text link
    K^+K^- production in two-photon collisions has been studied using a large data sample of 67 fb^{-1} accumulated with the Belle detector at the KEKB asymmetric e^+e^- collider. We have measured the cross section for the process gamma gamma -> K^+ K^- for center-of-mass energies between 1.4 and 2.4 GeV, and found three new resonant structures in the energy region between 1.6 and 2.4 GeV. The angular differential cross sections have also been measured.Comment: 24 pages, 8 figures, to appear in Euro. Phys. Jour.

    Search for the Electric Dipole Moment of the tau Lepton

    Get PDF
    We have searched for a CP violation signature arising from an electric dipole moment (d_tau) of the tau lepton in the e+e- -> tau+tau- reaction. Using an optimal observable method and 29.5 fb^{-1} of data collected with the Belle detector at the KEKB collider at sqrt{s} = 10.58 GeV, we find Re(d_tau) = (1.15 +- 1.70) x 10^{-17} ecm and Im(d_tau) = (-0.83 +- 0.86) x 10^{-17} ecm and set the 95% confidence level limits -2.2 < Re(d_tau) < 4.5 (10^{-17}ecm) and -2.5 < Im(d_tau) < 0.8 (10^{-17}ecm).Comment: 15 pages, LaTeX, 21 figures, submitted to Phys. Lett.
    • 

    corecore