735 research outputs found

    Current in the light-front Bethe-Salpeter formalism II: Applications

    Full text link
    We pursue applications of the light-front reduction of current matrix elements in the Bethe-Salpeter formalism. The normalization of the reduced wave function is derived from the covariant framework and related to non-valence probabilities using familiar Fock space projection operators. Using a simple model, we obtain expressions for generalized parton distributions that are continuous. The non-vanishing of these distributions at the crossover between kinematic regimes (where the plus component of the struck quark's momentum is equal to the plus component of the momentum transfer) is tied to higher Fock components. Moreover continuity holds due to relations between Fock components at vanishing plus momentum. Lastly we apply the light-front reduction to time-like form factors and derive expressions for the generalized distribution amplitudes in this model.Comment: 12 pages, 6 figures, RevTex

    A cyclical period variation detected in the updated orbital period analysis of TV Columbae

    Get PDF
    The two CCD photometries of the intermediate polar TV Columbae are made for obtaining the two updated eclipse timings with high precision. There is an interval time \sim 17yr since the last mid-eclipse time observed in 1991. Thus, the new mid-eclipse times can offer an opportunity to check the previous orbital ephemerides. A calculation indicates that the orbital ephemeris derived by Augusteijn et al. (1994) should be corrected. Based on the proper linear ephemeris (Hellier, 1993), the new orbital period analysis suggests a cyclical period variation in the O-C diagram of TV Columbae. Using Applegate's mechanism to explain the periodic oscillation in O-C diagram, the required energy is larger than that a M0-type star can afford over a complete variation period \sim 31.0(\pm 3.0)yr. Thus, the light travel-time effect indicates that the tertiary component in TV Columbae may be a dwarf with a low mass, which is near the mass lower limit \sim 0.08Msun as long as the inclination of the third body high enough.Comment: 10 pages, 5 figure

    Exploring skewed parton distributions with two body models on the light front II: covariant Bethe-Salpeter approach

    Get PDF
    We explore skewed parton distributions for two-body, light-front wave functions. In order to access all kinematical regimes, we adopt a covariant Bethe-Salpeter approach, which makes use of the underlying equation of motion (here the Weinberg equation) and its Green's function. Such an approach allows for the consistent treatment of the non-wave function vertex (but rules out the case of phenomenological wave functions derived from ad hoc potentials). Our investigation centers around checking internal consistency by demonstrating time-reversal invariance and continuity between valence and non-valence regimes. We derive our expressions by assuming the effective qq potential is independent of the mass squared, and verify the sum rule in a non-relativistic approximation in which the potential is energy independent. We consider bare-coupling as well as interacting skewed parton distributions and develop approximations for the Green's function which preserve the general properties of these distributions. Lastly we apply our approach to time-like form factors and find similar expressions for the related generalized distribution amplitudes.Comment: 25 pages, 12 figures, revised (minor changes but essential to consistency

    Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts

    Get PDF
    Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species’ responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure

    Consistent histories of systems and measurements in spacetime

    Full text link
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive "no collapse" interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eignestate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born's rule. The present paper addresses these topics by showing how Zurek's concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer comments, connecting the discussion in the paper more closely to consistent history concepts; v3 has minor editorial corrections; accepted for publication in Foundations of Physics; v4 has a couple minor typographical correction

    The spatio-relational nature of urban innovation systems: Universities, knowledge intensive business service firms, and collaborative networks

    Get PDF
    The need to better identify the spatio-relational nature of urban innovation systems and spaces is increasingly acknowledged. The aim of this paper, therefore, is to provide an enhanced understanding of the knowledge networks existing between urban Knowledge Intensive Business Services firms (KIBS) and universities, which are often key components of such systems and spaces. Drawing on an analysis of urban KIBS firms and universities in the UK, it is found that the nature of firms, the location in which they are based, and the research intensity of their university partners are important determinants of the spatiality and localisation of the networks they form. The results show that the smallest urban KIBS firms have the highest propensity to engage in local links with universities, suggesting that they rely most significantly on their own urban innovation system for collaborative network ties. Keywords : innovation systems; urban innovation spaces; knowledge-based development; proximity; networks; KIBS; universities

    Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential

    Get PDF
    The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition

    Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets

    Full text link
    The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole's accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a_* of the black hole (|a_*| < 1). The ten spins that have so far been measured by this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2, 6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405) who find no evidence for a correlation between the power of ballistic jets and black hole spi

    Choice of tracers for the evaluation of spray deposits

    Get PDF
    Tracer substances, used to evaluate spraying effectiveness, ordinarily modify the surface tension of aqueous solutions. This study aimed to establish a method of using tracers to evaluate distribution and amount of spray deposits, adjusted to the surface tension of the spraying solution. The following products were tested: 0.15% Brilliant Blue, 0.15% Saturn Yellow in 0.015% Vixilperse lignosulfonate, and 0.005% sodium fluorescein, and mixtures of Brilliant Blue plus Saturn Yellow and Brilliant Blue plus sodium fluorescein at the same concentrations. Solutions were deposited on citrus leaves and stability was determined by measuring fluorescence and optical density of solutions without drying, dried in the dark and exposed to sunlight for 2, 4 and 8 h. These values were compared to those obtained directly in water. The static surface tension of the tracer solution was determined by weighing droplets formed during a period of 20 to 40 seconds. The Brilliant Blue and Saturn Yellow mixture at 0.15% was stable under all conditions tested. It was not absorbed by the leaves and maintained the same surface tension as that of water, thus permitting concentration adjustment to the same levels used for agrochemical products, and allowing the development of a qualitative method based on visual evaluation of the distribution of the pigment under ultraviolet light and of a quantitative method based on the determination of the amount of the dye deposited in the same solution. Spray deposition could be evaluated at different surface tensions of the spraying solution, simulating the effect of agrochemical formulations
    • …
    corecore