1,757 research outputs found

    An interleaved sampling scheme for the characterization of single qubit dynamics

    Full text link
    In this paper, we demonstrate that interleaved sampling techniques can be used to characterize the Hamiltonian of a qubit and its environmental decoherence rate. The technique offers a significant advantage in terms of the number of measurements that are required to characterize a qubit. When compared to the standard Nyquist-Shannon sampling rate, the saving in the total measurement time for the interleaved method is approximately proportional to the ratio of the sample rates.Comment: 9 pages, 4 figure

    An algorithm for simulating the Ising model on a type-II quantum computer

    Full text link
    Presented here is an algorithm for a type-II quantum computer which simulates the Ising model in one and two dimensions. It is equivalent to the Metropolis Monte-Carlo method and takes advantage of quantum superposition for random number generation. This algorithm does not require the ensemble of states to be measured at the end of each iteration, as is required for other type-II algorithms. Only the binary result is measured at each node which means this algorithm could be implemented using a range of different quantum computing architectures. The Ising model provides an example of how cellular automata rules can be formulated to be run on a type-II quantum computer.Comment: 14 pages, 11 figures. Accepted for publication in Computer Physics Communication

    Minimal Steiner Trees for 2kĂ—2kSquare Lattices

    Get PDF
    AbstractWe prove a conjecture of Chung, Graham, and Gardner (Math. Mag.62(1989), 83–96), giving the form of the minimal Steiner trees for the set of points comprising the vertices of a 2k×2ksquare lattice. Each full component of these minimal trees is the minimal Steiner tree for the four vertices of a square

    Dynamical control of correlated states in a square quantum dot

    Get PDF
    In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find that, for certain combinations of frequency and strength of the applied field, the tunneling between various charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anti-crossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled states in mesoscopic devices.Comment: Replaced with version to be published in Phys. Rev.

    Classtalk: A Classroom Communication System for Active Learning

    Get PDF
    This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional

    Strong-field terahertz-optical mixing in excitons

    Get PDF
    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \omega_{THz} generated terahertz optical sidebands \omega=\omega_{THz}+\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.Comment: 4 pages, 6 figure

    Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

    Full text link
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter -radiation interaction are illustrated in a simple relativistic classical electromagnetic example.Comment: 18 page

    Strangeness Enhancement in p-A Collisions: Consequences for the Interpretation of Strangeness Production in A-A Collisions

    Get PDF
    Published measurements of semi-inclusive Lambda production in p-Au collisions at the AGS are used to estimate the yields of singly strange hadrons in nucleus-nucleus A-A collisions. Results of a described extrapolation technique are shown and compared to measurements of K+ production in Si-Al, Si-Au, and Au-Au collisions at the AGS and net Lambda production in Su-Su, S-Ag, Pb-Pb, and inclusive p-A collisions at the SPS. The extrapolations can account for more than 75% of the measured strange particle yields in all of the studied systems except for very central Au-Au collisions at the AGS where RQMD comparisons suggest large re-scattering contributions.Comment: 9 pages, 4 figure

    The structure of oppositionality: Response disposition and situational aspects

    Get PDF
    Background: The Amsterdam Scale of Oppositionality (ASO) is a recently developed self-report instrument to measure the full range of oppositionality. It was used to test the assumption that oppositionality can best be conceptualized as a combination of emotions and behaviors varying across contexts, i.e., with parents, peers and authority figures. Method: The sample consisted of 560 boys and 598 girls, aged 8 to 12 years. The thirty items of the ASO, grouped in item parcels, were analyzed using confirmatory factor analyses. Results: Results confirmed the main hypothesis. The best fitting models contained strongly related emotional and behavioral factors and three mutually related situational factors. Oppositionality appeared to be to a large extent situation-specific. Girls are more affected by the situation than boys and show less oppositionality only outside the family context. Conclusions: Results are discussed with respect to the concept of oppositionality, varying expectations for interpersonal consequences, and implications for clinical assessment and studies of inter-informant reliability

    Body mass index, but not FTO genotype or major depressive disorder, influences brain structure

    Get PDF
    Obesity and major depressive disorder (MDD) are highly prevalent and often comorbid health conditions. Both are associated with differences in brain structure and are genetically influenced. Yet, little is known about how obesity, MDD, and known risk genotypes might interact in the brain. Subjects were 81 patients with MDD (mean age 48.6 years) and 69 matched healthy controls (mean age 51.2 years). Subjects underwent 1.5T magnetic resonance imaging, genotyping for the fat mass and obesity associated (FTO) gene rs3751812 polymorphism, and measurements for body mass index (BMI). We conducted a whole brain voxelwise analysis using tensor-based morphometry (TBM) to examine the main and interaction effects of diagnosis, BMI and FTO genotype. Significant effects of BMI were observed across widespread brain regions, indicating reductions in predominantly subcortical and white matter areas associated with increased BMI, but there was no influence of MDD or FTO rs3751812 genotype. There were no significant interaction effects. Within MDD patients, there was no effect of current depressive symptoms; however the use of antidepressant medication was associated with reductions in brain volume in the frontal lobe and cerebellum. Obesity affects brain structure in both healthy participants and MDD patients; this influence may account for some of the brain changes previously associated with MDD. BMI and the use of medication should ideally be measured and controlled for when conducting structural brain imaging research in MDD
    • …
    corecore