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We prove a conjecture of Chung, Graham, and Gardner (Math. Mag. 62 (1989),
83�96), giving the form of the minimal Steiner trees for the set of points comprising
the vertices of a 2k_2k square lattice. Each full component of these minimal trees
is the minimal Steiner tree for the four vertices of a square. � 1996 Academic Press, Inc.

1. Introduction

Consider a finite set of points in the Euclidean plane. The Steiner
problem asks us to find a minimal network connecting these points, that is,
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a network such that the sum of the lengths of all the edges is as small as
possible (over all choices of suitable networks). This differs from other
path-minimizing problems, such as the Travelling Salesman Problem, in
that the network can contain extra vertices not belonging to the original set
of points.

In general the Steiner problem is a difficult one, principally because mini-
mizing the length of a network locally does not guarantee it will be
absolutely minimal among all possible choices. There is no local reduction
process whereby we can transform a network into a minimal network. If,
however, we restrict the problem to sets of points which lie in special
geometric configurations it is often possible to find simple algorithms to
construct a minimal network. In 1989, Chung, Gardner and Graham [2]
examined what they described as the checkerboard problem, namely, what
do the minimal networks look like when the points are arranged in a
regular lattice of unit squares like the corners of the cells of a checkerboard.
They gave a number of constructions for various cases which they conjec-
tured, but were unable to prove, were minimal. These constructions use as
a basic building block the Steiner tree for the corners of a unit square,
which we will denote by X, shown in Fig. 1.

In the case of a square array of 2k_2k points, there is a simple recursive
construction for building a network using only Xs. This is illustrated for
the 8_8 square lattice in Fig. 2. Note that the network is built from four
networks for 4_4 square lattices connected in the center by a single X. In
a similar way a network composed only of Xs for a 2k_2k square lattice
can be constructed from four networks for 2k&1_2k&1 square lattices.

In this paper we will show that such networks, or Steiner trees, are
indeed minimal. The basic idea is to show that the local properties of any
other network inevitably result in a longer Steiner tree. The details of this
appear in Section 3, after we provide some useful background and
preliminary results in Section 2.

The general checkerboard problem for square lattices of other dimen-
sions is substantially more difficult, as it requires a detailed structural
understanding of precisely which Steiner trees can potentially be used as
building blocks for the minimal network. The solution to this problem
and some of its generalizations will appear in a forthcoming paper
[1].

Fig. 1. The Steiner tree X.
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Fig. 2. A Steiner tree for the 8_8 checkerboard.

2. Preliminaries

In order to begin an analysis of Steiner trees on square lattices we should
first review some fundamental facts about Steiner trees, and some of the
basic tools available. Let M be a set of m fixed points in the Euclidean
plane. We will refer to these points as terminals. A minimal network, S,
consisting of vertices and edges connecting the points in M must have the
following properties [6]:

�� all edges are straight lines;

�� the network is a tree;

�� the angle between any two edges meeting at a vertex is at least
120%;

�� all vertices of S not in M, known as Steiner points, have degree 3,
and hence the edges meeting at a Steiner point make angles of precisely
120% with each other;

�� the number of Steiner points is at most m&2.

Any network on M with these properties is known as a Steiner tree.
However, these properties are not sufficient to ensure that the length of the
Steiner tree S, which we denote by L(S), is minimal. They do guarantee
that for any particular topology of S the tree is the shortest possible, but
the number of different topologies grows exponentially as m increases. In
fact it has been shown [5] that the Steiner problem is NP hard, which

93steiner trees for square lattices
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suggests that there can be no polynomial-time algorithm for generating
minimal Steiner trees.

For 2k_2k square lattices, however, we will show there is an explicit
construction for a minimal Steiner tree, namely the tree built solely from
Xs. We say that the Xs constitute the full components of this Steiner tree.
A Steiner tree is full if each of its terminals have degree 1. The full com-
ponents of a Steiner tree can be thought of as being the smallest irreducible
``blocks'' from which the Steiner tree is composed (by union at the terminals).

The aim of our analysis is to show that the minimal Steiner trees here
can contain no type of full component other than an X. Much of this
analysis requires only basic notions from geometry and trigonometry. The
following three well-known facts about minimal Steiner trees will also
prove useful.

1. Melzak's Theorem [7]. Let a, b and c be vertices of a triangle, all
of whose angles are less than 120%. Let the point (ac) be the third vertex of
the equilateral triangle based on ac whose interior does not intersect the inte-
rior of qabc. Let S be the minimal Steiner tree on a, b and c, with Steiner
point s. Melzak showed that the point (ac) lies on the extended line bs (see
Fig. 3). Furthermore, L(S)=d[b, (ac)], the distance between b and (ac).
This observation often proves valuable in helping calculate or estimate the
length of a Steiner tree.

2. Pollak's Theorem [8]. Let abcd be a convex quadrilateral. Let o be
the point where the diagonals ac and bd intersect, and assume Maod<90%.
Pollak's theorem says that if the two Steiner trees on [a, b, c, d] shown in
Fig. 4 both exist then the one on the right is a minimal Steiner tree, whereas
the other is strictly non-minimal. Du, Hwang, Song and Ting [4] have given
explicit conditions for determining when both topologies exist.

3. The Variational Technique [9]. It is possible to use techniques
from the Calculus of Variations to understand how L(S) changes when the
terminals of S undergo small perturbations. A simple consequence of this

Fig. 3. Melzak's theorem.
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Fig. 4. The Steiner tree on the right is shorter than the one on the left since Maod<90%.

variational approach is the following result, which will be of use in this paper.
Let e be an edge of S ending at a terminal t, and let v be a vector in the
Euclidean plane such that the angle % between e and v is acute. If we perturb
S by moving t in the direction of v while keeping all other terminals fixed
(and moving the Steiner points in such a way that S continues to be a Steiner
tree) then L(S) decreases in length, and the rate of decrease with respect to
v is proportional to cos(%). Hence the larger % is, the slower the rate at which
L(S) decreases as t moves along v.

Having established these definitions and techniques, we can now make
some simple observations about minimal Steiner trees on square lattices.

Proposition 2.1. A minimal Steiner tree for a square lattice contains no
edge of length greater than 1.

Proof. This is clear; it is an immediate property of the square lattice
that any edge of length greater than 1 in the Steiner tree could be replaced
by one of the edges of the square lattice to form a shorter tree. K

Let T* be a minimal Steiner tree spanning a square lattice. Let T denote
a full Steiner subtree of T* spanning a set of m terminals in this square lat-
tice. In other words, T is a full component of T*. Let S denote the set of
connected components of the union of the vertices and edges of T resulting
when the boundaries of squares of the square lattice are deleted. Define the
graph G(T) to be the graph whose vertex set is S, two components in S
being adjacent in G(T) if they both contain parts of the same edge of T or
if they both contain edges adjacent to a Steiner point on the boundary of
a square. It is immediate that G(T) is a tree since T is a tree.

Proposition 2.2. Every element of S contains at least one Steiner vertex
of T.

Proof. Since each edge of T has length at most 1, the only way the
proposition could fail to hold is if a situation such as that shown in Fig. 5
could occur. We will show by contradiction that this is not possible. Since

95steiner trees for square lattices
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Fig. 5. This picture cannot occur in T.

v is a vertex of the square lattice, by symmetry we can assume there is a
path in T* from a to v not passing through b (otherwise swap the roles of
a and b). But this implies T* is not minimal as we can replace the line
segment ab by the shorter line segment bv to create a shorter tree. K

We define a leaf of G(T) to be a vertex of G(T) of degree 1. Much of our
argument in this paper is based on examining the behaviour of the struc-
ture of T* that occurs in the leaves of G(T). Such a leaf is just a connected
part of T contained in a unit square of the lattice which intersects the
interior of precisely one side of the square at a single point.

Proposition 2.3. The only possible topologies (up to reflection and
rotation) for the parts of T corresponding to leaves in G(T) are the ones
shown in Fig. 6.

Proof. The idea of the proof is to eliminate all other possibilities by
non-optimality. Let a, b, c, and d be the vertices of the square containing
a leaf of G(T) and let T intersect the interior of the line segment cd.

If only one of a and b (say b) is a vertex of T then, since each edge of
T has length at most 1, it follows that the only possible topologies for the
leaf are those in Figures 6(ii) and (iii). If neither c nor d are vertices of T
we obtain the topology given in Figure 6(iv).

Now consider the situation where the leaf contains the vertices a and b
and precisely one of c and d (say c). There are two possible topologies,

Fig. 6. The only possible topologies for leaves of G(T).
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Fig. 7. Two non-minimal leaves.

those given in Figs. 6(i) and 7(i). In each case let u be the point of inter-
section of T with the line segment cd and let o be the point of intersection
of the lines au and bc. Clearly Maob<90% so it follows from Pollak's
Theorem that the topology in Fig. 7(i) is non-minimal.

Finally, if the leaf contains all four vertices of the square, then the only
possible topology (up to reflection) is that shown in Figure 7(ii). Let u be
the Steiner point adjacent to d and let o be the point of intersection of the
lines au and bc. If Mudc<45% it again follows that Maob<90%. But it is
clear that in fact Mudc<30%, hence there exists an alternative full topology
for the quadrilateral abcu which by Pollak's Theorem is minimal. Hence,
the topology in Fig. 7(ii) is non-minimal. K

Throughout this paper, we will refer to a leaf of G(T) with the topology
in Fig. 6(i) as an X-type leaf.

3. Nothing Succeeds Like Excess

Let T* be a minimal Steiner tree on an n_n square square lattice. In
this section we prove the following conjecture from [2].

Conjecture [Chung et al.] The minimal Steiner tree for a 2k_2k

square lattice, is the Steiner tree all of whose full components are Xs.

Chung et al. show such a tree exists on a square lattice precisely when
n=2k; we will show such trees are minimal. The key to proving the conjec-
ture is the observation that, per terminal, X appears in some sense to be
the most efficient possible full component of T*. In particular, we will
prove that if T is a full component of T* spanning a set of m terminals in
the n_n square lattice, then L(T)�(m&1) is minimized for T=X.

We first establish the notion of the excess of any tree T. Define

\=
L(X)

3
=

1+- 3
3

=.91068 } } } .
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Define the excess of T to be

e(T)=L(T)&(m&1)\.

Note that the excess is additive in the sense that if T is a subtree of T*
such that T=�k

i=1 Ti where each Ti is a full component of T* then e(T)=
�k

i=1 e(Ti). In Table I we give the excesses of some small full trees that can
occur in square lattices, as well as the terminology we will use to refer to
these trees.

We have defined excess so that e(X)=0. By the additivity property of
excess it now follows that the conjecture can be proved by establishing the
following theorem.

Theorem 3.1. Let T denote a full component of T* spanning a set of m
terminals in the square lattice. Then either T=X or e(T)>0.

Proof. Suppose e(T)�0; we aim to show that T=X. This is clearly
true if the number of terminals spanned by T is at most 4. So assume T
spans m�5 terminals. By induction on m, we can assume that any con-
nected graph spanning at most m&1 terminals of the square lattice has
excess at least 0. The theorem is proved by reaching a contradiction to our
assumption that e(T)�0, or in other words L(T)�(m&1)\.

Define G(T) as in the previous section. We will now prove a series of
lemmas which will enable us to eliminate all possibilities for T.

TABLE I

Excesses for Some Full Trees

T Name m Length Approx. excess

edge 2 1 0.089316 } } }

Y 3 (1+- 3)�- 2 0.11048 } } }

X 4 1+- 3 0

2_3 ladder 6 - 11+6 - 3 0.07176358 } } }

98 brazil et al.
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Lemma 3.2. The only possible topology (up to reflection and rotation) for
each part of T occurring in a leaf of G(T) is that in Figure 6(i).

Proof. From Proposition 2.3 it follows that we need to prove that none
of the topologies in Figure 6(ii)�(iv) can occur as a leaf of G(T). In each
case let T1 denote the part of the branch of T which lies above the line cd
and let u be the point where T intersects the interior of cd.

First consider the leaf shown in Figure 6(ii). Let x be the distance from
d to u. Since L(T)�(m&1)\, then by the minimality of T we require that
L(T1)�x+\, that is,

L(T1)&x�\,

for otherwise we can remove T1 from T and replace it by du. This would
reduce the excess of the tree and the number of terminals, thereby contra-
dicting the inductive hypothesis. A simple calculation shows that

L(T1)=- x2+x - 3+1.

The function - x2+x - 3+1&x is monotone decreasing for x>0. But
when x=1,

L(T1)&x=L(Y)&1=0.93185 } } } >\,

which gives a contradiction. So this is eliminated as a possible leaf of G(T).
For the leaf in Figure 6(iii), it is easily seen that the Steiner tree on the

points b, c and u is longer than the Steiner tree on a, c and u, so again
using the previous argument this cannot be a leaf of G(T).

The final possibility to be considered is that in Fig. 6(iv). Again let x be
the distance from c to u. If we consider the excess of T&T1 it is clear we
require that L(T1)<2\. Now note that L(T1) increases as x decreases from
1�2 to 0. When x=1�2 a simple calculation shows that L(T1)=1+- 3�2.
But this implies that for any x such that 0�x�1�2 we have

L(T1)�1+- 3�2>2\.

So again this topology is not possible. K

Using excess, we next show that the range of angles that can occur in an
X-type leaf is restricted.

Lemma 3.3. If T1 is an X-type leaf of G(T), as in Figure 6(i), then the
angle of the near-vertical line from the vertical must be less than 7%. Further-
more, if c and d are adjacent to adjacent Steiner points, as shown in

99steiner trees for square lattices
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Figure 10, then the angle of the near-vertical line from the vertical must be
less than 5%.

Proof. To prove this result we make use of Melzak's Theorem. Let u be
the point where T crosses the line cd, let x=d[c, u] and let % be the angle
of the near-vertical edge of T1 from the vertical. By the same excess argu-
ment used above it follows that it suffices to prove that L(T1)&x&2\>0
for all % such that 7%�%<15%.

Let (ab) be the third vertex of the equilateral triangle not lying in abcd
whose other vertices are a and b. Similarly, let (cu) be the third vertex of
the equilateral triangle on c and u outside abcd. By Melzak's Theorem, the
near-vertical edge of T1 when extended passes through both (ab) and (cu),
and L(T1)=d[(ab), (cu)]. Now extend the line segments (ab)a and (cu)c
to form an isosceles triangle on the edge ac, as illustrated in Fig. 8. Note
that M(cu)(ab)a=(30&%)% and M(ab)(cu)c=(30+%)%. By the sine rule
we obtain

L(T1)
sin(120)

=
1+1�- 3

sin(30+%)
,

Fig. 8. Construction for the first part of Lemma 3.3.

100 brazil et al.
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that is,

L(T1)=
1+- 3

2 sin(30+%)
.

To find x in terms of % again apply the sine rule, giving

x+1�- 3
sin(30&%)

=
L(T1)

sin(120)
,

which implies

x=(1+1�- 3)
sin(30&%)
sin(30+%)

&1�- 3. (3.1)

Computing L(T1)&x&2\ as a function of % it is now easily checked, using
for example Mathematica, that this function, f1(%), is a monotonically
increasing function and equals 0 at %r6.8699% (see Fig. 9). Consequently
f1(%) is positive for all %�7%.

For the second angle result we can strengthen the above argument. Let s
be the Steiner point of T adjacent to d and define y=d[c, s] and z=d[u, s],
as shown in Fig. 10. By induction, we have that L(T&(T1+us)+cs)�
(m&3)\. Thus, by our assumption on e(T),

L(T1)+z&y&2\�0.

Given that we have calculated x as a function of %, it is not difficult to
calculate the left-hand side of this inequality as a function of %. By the sine
rule,

z=(1&x)
sin(30&%)

sin(120)

Fig. 9. f1(%)=L(T1)&x&2\.

101steiner trees for square lattices
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Fig. 10. Construction for the second part of Lemma 3.3.

since Muds=(30&%)%. Noting that Mcus=(150&%)%, we obtain, by the
cosine rule,

y=- x2+z2&2xz cos(150&%).

By substitution we can now compute f2(%)=L(T1)+z&y&2\ as a func-
tion of %. Again using Mathematica, f2 can be shown to be an increasing
function for 0%<%<7%, and is positive for all %�5% (see Fig. 11). K

Lemma 3.4. Two leaves of G(T) which are in squares which share exactly
one corner cannot both be adjacent to the same vertex of G(T).

Proof. This follows immediately from Lemmas 3.2 and 3.3 since the
leaves are oriented at 90% to each other and hence the angles do not
match up. K

Lemma 3.5. No two leaves of G(T) can both be adjacent to the same ver-
tex of G(T) of degree 3.

Fig. 11. f2(%)=L(T1)+z&y&2\.
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Proof. Assume there exist two leaves of G(T) both adjacent to the same
vertex of G(T) of degree 3. Both leaves must be X-leaves, and by
Lemma 3.4 they must be in squares not sharing a corner. Up to reflection
and rotation, there are only three possible situations: those shown in
Figs. 12(i), 13(i) and 13(ii). Other situations immediately cause the tree to
intersect with itself (noting Proposition 2.2).

First consider the situation in Figure 12(i). We will show this can be
eliminated by optimality. Let s be the Steiner point not adjacent to any
vertex of the square lattice. Consider the left-hand downwards branch at s.
By Proposition 2.2, this edge must branch at another Steiner point s1 in the
square efgh, and the downwards branch at s1 must cross eg in order that
T not intersect itself (see Figure 12(ii)). By the same argument this branch
must branch again at another Steiner point, s2 , before reaching the exten-
sion of gh. In the same way, the rightmost downwards branch at s2 is
forced to cross the extension of gh and branch at s3 , the rightmost upwards
branch of which must cross the extension of eg and branch at s4 , the
upwards branch of which must cross gh. But it is clear that T now cannot
avoid self-intersection, hence this topology is impossible.

Figures 13(i) and (ii) can be shown not to occur using excess. In each
case, comparing the part of T contained in the upper and middle squares
with the 2_3 ladder shown in Figure 13(iii), it is clear that the angle of the
near-vertical edge from the vertical must be greater than the same angle in
the 2_3 ladder. But in the 2_3 ladder this angle is approximately 6.2%
(see, for example, [3]), which implies that these possibilities can be
eliminated by Lemma 3.3. K

Fig. 12. Figure for Lemma 3.5.
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Fig. 13. Second figure for Lemma 3.5.

To conclude the proof of the main theorem we will show that G(T) can-
not have an X-type leaf adjacent to a vertex of degree 2. For this, we begin
by using an optimality argument rather than excess. So let T$ denote any
full component of T*. Then there are ten possible topologies for the tree
in the square corresponding to a vertex of degree 2 in G(T$) adjacent to an
X-type leaf. These are shown in Fig. 14, and it is easily checked that the list
is complete by considering all possible ways this branch can connect to the
rest of the tree in such a way that Propositions 2.1 and 2.2 are satisfied. Six
of these ten possibilities can immediately be eliminated by being shown to

Fig. 14. The 10 possible topologies for a vertex of degree 2 adjacent to an X-type leaf.
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be non-optimal. We will prove this result first (before showing that none of
the other four can occur in T) as it may also be useful in approaching the
more general problem of classifying minimal Steiner trees on any rec-
tangular square lattice.

Proposition 3.6. Let T$ be a full component of T*. The only possible
topologies (up to reflection) for the part of T$ corresponding to an X-type
leaf and adjacent vertex of degree 2 in G(T$) are those shown in Figure 14(i),
(ii), (vi) and (ix).

Proof. We will show that the other six topologies in Figure 14 are all
non-optimal. In each case let u be the point on the boundary of cdef where
this branch connects to the rest of T$.

To deal with alternative (v), consider the instance of (ii) in which the
distance, x, from u to e in (ii) equals the distance from u to f in (v). We
now argue using the variational technique. In alternative (ii) the acute
angle between ef and the edge through u is smaller than the corresponding
angle in the reflection of (v), so a small decrease in x increases the length
of (ii) faster than it increases the length of (v). But if x=0 then (ii) and (v)
coincide. Thus (v) is longer than (ii) and hence non-minimal, since we can
replace it by the reflection of (ii) to obtain a shorter subtree. Similarly,
(iii) is non-optimal since it is longer than (vi) by the same variational argument.

To see that (x) is non-optimal consider Fig. 15. Let dhfg be the square
to the right of cdef and let v0 be the Steiner point in T$ adjacent to d. By
Proposition 2.2 the edge of T$ that extends from the square cdef to the
square dhfg cannot extend all the way to the line fg or gh. Thus, this edge
must branch at a Steiner point v1 in the square cdef. Assume the
downwards branch at v1 meets fg at the point w1 . From the geometry of
the situation, it is clear that Mw1 fv0>90% and M fw1 v1>90%, hence
d[v0 , v1]>d[ f, w1]. Thus we can replace the edge v0 v1 by the new edge
fw1 to create a shorter tree. But if the downwards branch at v1 branches
again before reaching fg the situation is clearly even less optimal. Thus (x)

Fig. 15. Alternatives (x) and (iv) cannot be part of optimal trees.
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cannot be part of a minimal tree. Alternative (iv) is also non-optimal by a
very similar argument.

Finally, (vii) and (viii) are non-optimal by the same argument we used
to eliminate Figure 12(ii) in Lemma 3.5. K

Lemma 3.7. G(T) cannot have a leaf adjacent to a vertex of degree 2.

Proof. Suppose to the contrary that G(T) has a vertex v of degree 2
adjacent to a leaf. Since the leaf T1 must be an X-type leaf, there are four
cases to consider by the previous proposition: specifically, those in Figure
14(i), (ii), (vi) and (ix).

For alternative (i) let T2 be the part of T above ef shown in (i), and
let v be the point where T intersects the interior of ef. By induction,
L(T2)�4\. Now note that L(T2) decreases as d[v, f ] decreases and hence
T2 is longer than an X plus a unit edge. That is,

L(T2)>L(X)+1=3\+1>4\.

This eliminates (i).
Alternative (ix) can also be easily eliminated using excess. First note that

we can extend the result in the second part of Lemma 3.3 (where the tree
T2 connects to d ) to this case (where T2 crosses the interior of df ). By the
variational argument, as the intersection with df moves towards f, in the
proof of Lemma 3.3, z increases faster than y. So the upper bound
2\+y&z for T1 decreases, and the estimate of the angle, from the vertical,
of the near vertical edge, as less than 5%, holds. Next, as in Lemma 3.5, we
observe that this angle must be greater than that in a vertical 2_3 ladder,
and hence greater than 6.2%, which provides the required contradiction.

For (ii) and (vi) we require more computational arguments. In each case
let T2 be the part of T in the square cdef adjacent to T1 , let u be the point
where T intersects the interior of cd, and define x=d[c, u].

First consider alternative (ii). Let v be the point where T crosses ef and
let z=d[v, f ]. Our construction here is almost identical to that in
Lemma 3.3. Let (ud) and (vf ) be the third points of the equilateral triangles
on ud and df lying outside the square cdef, as in Fig. 16. By Melzak's
Theorem, L(T2)=d[(ud), (vf )]. We wish to calculate L(T2) and z in terms
of %, the angle of the near-vertical edge from the vertical. Equation 3.1, in
the proof of Lemma 3.3, gives us an expression for x in terms of %, and the
method employed in that proof will allow us to find L(T2) and z in terms
of x and %. As before, extend (ud)d and (vf ) f to form an isoceles triangle
on df. Applying the sine rule, we obtain

L(T2)=
1+(1&x) - 3
2 sin(30&%)
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Fig. 16. Construction for calculating the excess of alternative (ii).

and

z=(1&x+1�- 3)
sin(30+%)
sin(30&%)

&1�- 3.

Let F=L(T1)+L(T2)&z&4\. By substitution we can express F as a func-
tion of %, and by induction we have that F(%)�0. However a computation
of F(%), using Mathematica, shows that F(%)>0 for all %�5% (Fig. 17) and
hence, by the second part of Lemma 3.3, this topology is not possible.

For alternative (vi), let (ud) be the third vertex of the equilateral triangle
based on ud and let (e(ud)) be the third vertex of the equilateral triangle

Fig. 17. Graph of F(%).
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based on e(ud), as shown in Fig. 18. Now let y=d[e, (ud)] and let
,=Mce(ud). A simple geometric argument shows that

y=- (1+(1&x) - 3�2)2+((1+x)�2)2

and

,=arcsin \1+x
2y + .

Next let the extension of (e(ud))(ud) meet bd at the point p, let
p1=d[(ud, p] and let p2=d[p, d]. Noting that M(ud) pd=(60+,)%, we
obtain from the sine rule:

p1=
1&x

2 sin(60+,)

and

p2=
(1&x) cos(,)

sin(60+,)
.

Now define v to be the point where T crosses df. By Melzak's theorem,
L(T2)=d[(e(ud)), v]. Since M(e(ud)) vp=(60&%)%, we deduce that

L(T2)=
(y+p1) sin(60+,)

sin(60&%)
.

Fig. 18. Construction for calculating the excess of alternative (vi).

108 brazil et al.



File: 582A 261319 . By:MC . Date:15:12:95 . Time:10:42 LOP8M. V8.0. Page 01:01
Codes: 2349 Signs: 1626 . Length: 45 pic 0 pts, 190 mm

Fig. 19. Graph of G(%).

Furthermore, if we define z=d[d, v], then we obtain

z=
L(T2) sin(60+%&,)

sin(60+,)
&p2 .

Now let G=L(T1)+L(T2)&z&4\. By extensive back-substitution it is
clear that we can express G as a function of %, and by induction we have
G(%)<0. Analysing the function using Mathematica again shows this is not
the case for %�5%, as illustrated in Fig. 19. This eliminates the final case
and hence proves the lemma. K

Proof of Theorem 3.1 continued. The diameter, diam(T$), of a tree T$ is
the length of a longest path in T$. By our assumption, T spans more than
four vertices of the square lattice, and hence diam(G(T))>0. Suppose that
G(T) has diameter at least 3. Then deleting all leaves of G(T) must produce
a tree, with a leaf v. In G(T), v must either be a vertex of degree 2 adjacent
to one leaf, or of degree 3 adjacent to two leaves, or of degree 4 adjacent
to three leaves. These are ruled out by Lemmas 3.7, 3.5 and 3.4 respectively.
Hence G(T) has diameter at most 2. If it is 2, then it is again eliminated
by these lemmas. If it is 1, then by Lemma 3.2 T spans the 2_3 ladder and
thus has excess more than 0 (see Table 1). This eliminates all possibilities
for T spanning more than four terminals. The induction is complete. K

This proves Theorem 1. Since n_n boards with n=2k can be covered
with Xs, this proves the Conjecture for such n.

References

1. M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald, Full
minimal Steiner trees on lattice sets, preprint.

2. F. R. K. Chung, M. Gardner, and R. L. Graham, Steiner trees on a checkerboard,
Math. Mag. 62 (1989), 83�96.

109steiner trees for square lattices



F
ile

:5
82

A
26

13
20

.B
y:

B
V

.D
at

e:
02

:0
1:

00
.T

im
e:

07
:0

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

12
49

Si
gn

s:
79

7
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

3. F. R. K. Chung and R. L. Graham, Steiner trees for ladders, Ann. Discrete Math. 2
(1978), 173�200.

4. D. Z. Du, F. K. Hwang, G. D. Song, and G. Y. Ting, Steiner minimal trees on sets of
four points, Discrete Comput. Geom. 2 (1987), 401�414.

5. M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity of computing Steiner
minimal trees, SIAM J. Appl. Math. 32 (1977), 835�859.

6. E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968),
1�29.

7. Z. A. Melzak, On the problem of Steiner, Canad. Math. Bull. 4 (1961), 143�148.
8. H. O. Pollak, Some remarks on the Steiner problem, J. Combin. Theory Ser. A 24 (1978),

278�295.
9. J. H. Rubinstein and D. A. Thomas, A variational approach to the Steiner network

problem, Ann. Oper. Res. 33 (1991), 481�499.

110 brazil et al.


