29 research outputs found

    Stiffness of Concrete-Filled Steel Deck Diaphragms

    Get PDF
    In structural analysis of building structures, the in-plane stiffness diaphragms is needed so that lateral loads will be properly distributed to elements of the lateral-force resisting system. In US building codes, diaphragm stiffness is used to determine whether a diaphragm can be assumed rigid or flexible and is also used in semi-rigid diaphragm analysis. For concrete-filled steel deck diaphragms, methods provided in AISI S310 (AISI, 2020) to calculate stiffness have relied on empirical formulas while past research by Porter and Easterling (1988) suggests that mechanical models and theoretical formulas can accurately capture stiffness. Recently, eight cantilever diaphragm specimens were tested with variations in depth of concrete cover, deck depth, perimeter stud anchor configuration, concrete type (normal weight (NW) and lightweight (LW)), and the presence of either welded wire mesh or reinforcing steel. This report summarizes the results of this testing program as they relate to initial stiffness. The initial stiffness results of this testing program are used in conjunction with the results of a testing program performed Porter and Easterling (1988) to form a set of 25 specimens that are then used to validate a proposed prediction model for the initial stiffness of concrete-filled steel deck diaphragms. The proposed prediction model is based on a theoretical framework proposed by Porter and Easterling (1988) which concluded that the initial stiffness of a concrete-filled steel deck diaphragm is a combination of 1) the diaphragm shear stiffness, 2) the bending stiffness of the concrete-filled steel deck diaphragm combined with the chords, and 3) the stiffness of the shear transfer connections between the concrete-filled steel deck diaphragm and the supporting steel frame. The proposed stiffness predictions using this approach resulted in an average ratio of predicted stiffness to measured stiffness equal to 0.95 with a standard deviation of 0.21. Based on this comparison for 25 cantilever diaphragm specimens, it was deemed that the prediction model accurately represents the initial shear stiffness of concrete-filled steel deck diaphragms. This report also includes two examples to illustrate of how the proposed prediction model can be used to calculate diaphragm deflections for two different diaphragm configurations. The results of these examples showed that for the cantilever diaphragm configuration, the deflection of the free end is mostly due to the shear deformation of the concrete-filled steel deck diaphragm or to the deformation of the shear transfer connection, depending on the spacing of headed stud anchors, with the bending deformations contributing the least to the total deflection. For the case of a simply supported diaphragm, the mid-span deflection was attributed primarily to bending deformations of the diaphragm (78% of total deflection), with shear deformations contributing to approximately 25% of the total deflection and the deformation of the shear transfer connections contributing less than 1% of the total deflection.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF

    SDII Building Archetype Design v2.0

    Get PDF
    Building designs, SAP models, spreadsheets, and slide decks in support of SDII building archetype designs.Building archetypes are fundamental to exploring and demonstrating the seismic behavior of modern structures. No suitable archetypes or prototypes exist in the open literature that focus on steel deck diaphragms for conventional steel buildings. Three dimensional building analysis, with meaningful contributions from the diaphragm in terms of behavior, has not formed the basis for modern seismic standards in steel at this time. The objectives for the SDII building archetypes include the following. Develop a series of 3D steel-framed archetype buildings that explore and document the design of horizontal lateral force resisting systems (LFRSs) with steel deck-based diaphragms as well as vertical LFRSs and the inter-relationship between the two. Provide a series of buildings that form a common basis of comparison for diaphragms in steel-framed buildings much the same way the SAC buildings did for the vertical LFRS. Explicitly explore the impact of the ASCE 7-16 standard, and ASCE 7-16 alternate diaphragm design with: Rs=1, Rs=2 for steel deck with fill and 2.5 for bare steel deck, and Rs=3 in designs. Inform areas for needed experimentation, and create targets for advancing nonlinear analysis within the full SDII effort.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF

    Cantilever Testing of Concrete-Filled Steel Deck Composite Diaphragms Using Various Types of Steel Reinforcing

    Get PDF
    This report provides a summary of nonlinear response history analyses conducted on a three- dimensional model of a series of steel buildings with special concentric braced frames (SCBFs). The models are conducted in OpenSees and include appropriate nonlinear response for the braced frames as well as the concrete-filled steel deck diaphragms and bare steel deck roofs. Additionally the buildings are designed considering traditional diaphragm design as defined by ASCE 7-16 12.10.1 as well as the new alternative diaphragm design procedures of ASCE 7-16 12.10.3. These alternative procedures have a seismic response modification coefficient, Rs, which is specific to the diaphragm system. Rs values between 1 and 3 are investigated herein. The results indicate that SCBF building performance is sensitive to the diaphragm design, and that traditional diaphragm design does not lead to acceptable levels of performance. Use of the alternative diaphragm design procedure with Rs=2.0 for concrete-filled steel deck floors and Rs=2.5 for bare steel deck roofs is recommended. Future work is needed to continue to refine collapse criteria for 3D building models and to allow the engineer greater clarity in the extent of expected inelasticity in the vertical system vs. the diaphragm system when different combinations of R and Rs, i.e. different combinations of vertical and horizontal lateral force resisting systems, are employed.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF

    Steel foam for structures: A review of applications, manufacturing and material properties

    Get PDF
    The objective of this paper is to provide a state-of-the-art review for the structural application, manufacturing, material properties, and modeling of a new material: steel foam. Foamed steel includes air voids in the material microstructure and as a result introduces density as a new design variable in steel material selection. By controlling density the engineering properties of steel components may be altered significantly: improvement in the weight-to-stiffness ratio is particularly pronounced, as is the available energy dissipation and thermal resistivity. Full-scale applications of steel foams in civil structures have not yet been demonstrated. Therefore, existing applications demonstrating either proof-of-concept for steel foam, or full-scale use of aluminum foams in situations with clear civil/structural analogs are highlighted. Adoption of steel foam relies on the manufacturing method, particularly its cost, and the resulting properties of the steel foam. Therefore, published methods for producing steel foam are summarized, along with measurements of steel foam structural (modulus, yield stress, etc.) and non-structural (thermal conductivity, acoustic absorption, etc.) properties. Finally, existing models for predicting foamed steel material properties are summarized to highlight the central role of material density. Taken in total the existing research demonstrates the viability of steel foams for use in civil/structural applications, while also pointing to areas where further research work is required. © 2011 Elsevier Ltd. All rights reserved

    Steel foam for structures: A review of applications, manufacturing and material properties

    Get PDF
    The objective of this paper is to provide a state-of-the-art review for the structural application, manufacturing, material properties, and modeling of a new material: steel foam. Foamed steel includes air voids in the material microstructure and as a result introduces density as a new design variable in steel material selection. By controlling density the engineering properties of steel components may be altered significantly: improvement in the weight-to-stiffness ratio is particularly pronounced, as is the available energy dissipation and thermal resistivity. Full-scale applications of steel foams in civil structures have not yet been demonstrated. Therefore, existing applications demonstrating either proof-of-concept for steel foam, or full-scale use of aluminum foams in situations with clear civil/structural analogs are highlighted. Adoption of steel foam relies on the manufacturing method, particularly its cost, and the resulting properties of the steel foam. Therefore, published methods for producing steel foam are summarized, along with measurements of steel foam structural (modulus, yield stress, etc.) and non-structural (thermal conductivity, acoustic absorption, etc.) properties. Finally, existing models for predicting foamed steel material properties are summarized to highlight the central role of material density. Taken in total the existing research demonstrates the viability of steel foams for use in civil/structural applications, while also pointing to areas where further research work is required. © 2011 Elsevier Ltd. All rights reserved

    SDII Building Archetype Design v2.0

    No full text
    Building designs, SAP models, spreadsheets, and slide decks in support of SDII building archetype designs.Building archetypes are fundamental to exploring and demonstrating the seismic behavior of modern structures. No suitable archetypes or prototypes exist in the open literature that focus on steel deck diaphragms for conventional steel buildings. Three dimensional building analysis, with meaningful contributions from the diaphragm in terms of behavior, has not formed the basis for modern seismic standards in steel at this time. The objectives for the SDII building archetypes include the following. Develop a series of 3D steel-framed archetype buildings that explore and document the design of horizontal lateral force resisting systems (LFRSs) with steel deck-based diaphragms as well as vertical LFRSs and the inter-relationship between the two. Provide a series of buildings that form a common basis of comparison for diaphragms in steel-framed buildings much the same way the SAC buildings did for the vertical LFRS. Explicitly explore the impact of the ASCE 7-16 standard, and ASCE 7-16 alternate diaphragm design with: Rs=1, Rs=2 for steel deck with fill and 2.5 for bare steel deck, and Rs=3 in designs. Inform areas for needed experimentation, and create targets for advancing nonlinear analysis within the full SDII effort.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF

    Local buckling strength of steel foam sandwich panels

    Get PDF
    The objective of this paper is to provide and verify a new design method for the in-plane compressive strength of steel sandwich panels comprised of steel face sheets and foamed steel cores. Foamed steel, literally steel with internal voids, provides enhanced bending rigidity, exceptional energy dissipation, and the potential to mitigate local instability. In this work, Winters effective width expression is generalized to the case of steel foam sandwich panels. The generalization requires modification of the elastic buckling expressions to account for panel non-composite bending rigidity and shear deformations. In addition, an equivalent yield stress is introduced to provide a single parameter description of the yielding behavior of the steel face sheets and steel foam core. The provided analytical expressions are verified with finite element simulations employing three-dimensional continuum elements and calibrated constitutive models specific to metallic foams. The developed closed-form design expressions are employed to conduct parametric studies of steel foam sandwich panels, which (a) demonstrate the significant strength improvements possible when compared with solid steel, and (b) provide insights on the optimal balance between steel face sheet thickness and density of the foamed steel core. This work is part of a larger effort to help develop steel foam as a material with relevance to civil engineering applications. © 2012 Elsevier Ltd. All rights reserved

    Cantilever Testing of Concrete-Filled Steel Deck Composite Diaphragms Using Various Types of Steel Reinforcing

    No full text
    This report provides a summary of nonlinear response history analyses conducted on a three- dimensional model of a series of steel buildings with special concentric braced frames (SCBFs). The models are conducted in OpenSees and include appropriate nonlinear response for the braced frames as well as the concrete-filled steel deck diaphragms and bare steel deck roofs. Additionally the buildings are designed considering traditional diaphragm design as defined by ASCE 7-16 12.10.1 as well as the new alternative diaphragm design procedures of ASCE 7-16 12.10.3. These alternative procedures have a seismic response modification coefficient, Rs, which is specific to the diaphragm system. Rs values between 1 and 3 are investigated herein. The results indicate that SCBF building performance is sensitive to the diaphragm design, and that traditional diaphragm design does not lead to acceptable levels of performance. Use of the alternative diaphragm design procedure with Rs=2.0 for concrete-filled steel deck floors and Rs=2.5 for bare steel deck roofs is recommended. Future work is needed to continue to refine collapse criteria for 3D building models and to allow the engineer greater clarity in the extent of expected inelasticity in the vertical system vs. the diaphragm system when different combinations of R and Rs, i.e. different combinations of vertical and horizontal lateral force resisting systems, are employed.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF
    corecore