582 research outputs found
Entropy of chains placed on the square lattice
We obtain the entropy of flexible linear chains composed of M monomers placed
on the square lattice using a transfer matrix approach. An excluded volume
interaction is included by considering the chains to be self-and mutually
avoiding, and a fraction rho of the sites are occupied by monomers. We solve
the problem exactly on stripes of increasing width m and then extrapolate our
results to the two-dimensional limit to infinity using finite-size scaling. The
extrapolated results for several finite values of M and in the polymer limit M
to infinity for the cases where all lattice sites are occupied (rho=1) and for
the partially filled case rho<1 are compared with earlier results. These
results are exact for dimers (M=2) and full occupation (\rho=1) and derived
from series expansions, mean-field like approximations, and transfer matrix
calculations for some other cases. For small values of M, as well as for the
polymer limit M to infinity, rather precise estimates of the entropy are
obtained.Comment: 6 pages, 7 figure
Silicon spin diffusion transistor: materials, physics and device characteristics
The realisation that eaveryday electronics has ignored the spin of the carrier in favour of its charge is the foundation of the field of spintronics. Starting with simple two-terminal devices based on GMR and tunnel magnetoresistance, the technology has advanced to consider three-terminal devices that aim to combine spin sensitivity with a high current gain and a large current output. These devices require both efficient spin injection and semiconductor fabrication. In this paper, a discussion is presented of the design, operation and characteristics of the only spin transistor that has yielded a current gain greater than one in combination with reasonable output current
Understanding and engineering beneficial plantâmicrobe interactions:Plant growth promotion in energy crops
Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plantâmicrobe relationships which may have been inadvertently lost through intensive crop breeding. Plantâmicrobe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plantâmicrobe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications
Pocket Monte Carlo algorithm for classical doped dimer models
We study the correlations of classical hardcore dimer models doped with
monomers by Monte Carlo simulation. We introduce an efficient cluster
algorithm, which is applicable in any dimension, for different lattices and
arbitrary doping. We use this algorithm for the dimer model on the square
lattice, where a finite density of monomers destroys the critical confinement
of the two-monomer problem. The monomers form a two-component plasma located in
its high-temperature phase, with the Coulomb interaction screened at finite
densities. On the triangular lattice, a single pair of monomers is not
confined. The monomer correlations are extremely short-ranged and hardly change
with doping.Comment: 6 pages, REVTeX
X-ray induced photocurrent characteristics of CVD diamond detectors with different carbon electrodes
Non-linear Dynamics in QED_3 and Non-trivial Infrared Structure
In this work we consider a coupled system of Schwinger-Dyson equations for
self-energy and vertex functions in QED_3. Using the concept of a
semi-amputated vertex function, we manage to decouple the vertex equation and
transform it in the infrared into a non-linear differential equation of
Emden-Fowler type. Its solution suggests the following picture: in the absence
of infrared cut-offs there is only a trivial infrared fixed-point structure in
the theory. However, the presence of masses, for either fermions or photons,
changes the situation drastically, leading to a mass-dependent non-trivial
infrared fixed point. In this picture a dynamical mass for the fermions is
found to be generated consistently. The non-linearity of the equations gives
rise to highly non-trivial constraints among the mass and effective (`running')
gauge coupling, which impose lower and upper bounds on the latter for dynamical
mass generation to occur. Possible implications of this to the theory of
high-temperature superconductivity are briefly discussed.Comment: 29 pages LATEX, 7 eps figures incorporated, uses axodraw style.
Discussion on the massless case (section 2) modified; no effect on
conclusions, typos correcte
Dimer coverings on the Sierpinski gasket with possible vacancies on the outmost vertices
We present the number of dimers on the Sierpinski gasket
at stage with dimension equal to two, three, four or five, where one of
the outmost vertices is not covered when the number of vertices is an
odd number. The entropy of absorption of diatomic molecules per site, defined
as , is calculated to be
exactly for . The numbers of dimers on the generalized
Sierpinski gasket with and are also obtained
exactly. Their entropies are equal to , , ,
respectively. The upper and lower bounds for the entropy are derived in terms
of the results at a certain stage for with . As the
difference between these bounds converges quickly to zero as the calculated
stage increases, the numerical value of with can be
evaluated with more than a hundred significant figures accurate.Comment: 35 pages, 20 figures and 1 tabl
Using process algebra to model radiation induced bystander effects
Radiation induced bystander effects are secondary effects caused by the production of chemical signals by cells in response to radiation. We present a Bio-PEPA model which builds on previous modelling work in this field to predict: the surviving fraction of cells in response to radiation, the relative proportion of cell death caused by bystander signalling, the risk of non-lethal damage and the probability of observing bystander signalling for a given dose. This work provides the foundation for modelling bystander effects caused by biologically realistic dose distributions, with implications for cancer therapies
Scaling analysis of a model Hamiltonian for Ce impurity in a cubic metal
We introduce various exchange interactions in a model Hamiltonian for
Ce ions in cubic symmetry with three configurations (,,).
With the impurity pseudo spin , our Hamiltonian includes: (i)
One-channel Anderson model; (ii) Two-channel Anderson
model; (iii) An unforseen one-channel Anderson model with a
non-trivial fixed point; (iv) Mixing exchange interaction between the
and the conduction electron partial wave states; (v)
Multiple conduction electron partial wave states. Using the third-order scaling
(perturbative renormalization group) analysis, we study stability of various
fixed points relevant to various exchange interactions for Ce ions in
cubic symmetry.Comment: 68 pages. 4 figures are available upon request from
[email protected] (revised
- âŠ