419 research outputs found

    Extension of geodesic algebras to continuous genus

    Get PDF
    Using the Penner--Fock parameterization for Teichmuller spaces of Riemann surfaces with holes, we construct the string-like free-field representation of the Poisson and quantum algebras of geodesic functions in the continuous-genus limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER

    Geometrical (2+1)-gravity and the Chern-Simons formulation: Grafting, Dehn twists, Wilson loop observables and the cosmological constant

    Get PDF
    We relate the geometrical and the Chern-Simons description of (2+1)-dimensional gravity for spacetimes of topology R×SgR\times S_g, where SgS_g is an oriented two-surface of genus g>1g>1, for Lorentzian signature and general cosmological constant and the Euclidean case with negative cosmological constant. We show how the variables parametrising the phase space in the Chern-Simons formalism are obtained from the geometrical description and how the geometrical construction of (2+1)-spacetimes via grafting along closed, simple geodesics gives rise to transformations on the phase space. We demonstrate that these transformations are generated via the Poisson bracket by one of the two canonical Wilson loop observables associated to the geodesic, while the other acts as the Hamiltonian for infinitesimal Dehn twists. For spacetimes with Lorentzian signature, we discuss the role of the cosmological constant as a deformation parameter in the geometrical and the Chern-Simons formulation of the theory. In particular, we show that the Lie algebras of the Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz algebra over a commutative ring, characterised by a formal parameter ΘΛ\Theta_\Lambda whose square is minus the cosmological constant. In this framework, the Wilson loop observables that generate grafting and Dehn twists are obtained as the real and the ΘΛ\Theta_\Lambda-component of a Wilson loop observable with values in the ring, and the grafting transformations can be viewed as infinitesimal Dehn twists with the parameter ΘΛ\Theta_\Lambda.Comment: 50 pages, 6 eps figure

    Grafting and Poisson structure in (2+1)-gravity with vanishing cosmological constant

    Full text link
    We relate the geometrical construction of (2+1)-spacetimes via grafting to phase space and Poisson structure in the Chern-Simons formulation of (2+1)-dimensional gravity with vanishing cosmological constant on manifolds of topology R×SgR\times S_g, where SgS_g is an orientable two-surface of genus g>1g>1. We show how grafting along simple closed geodesics \lambda is implemented in the Chern-Simons formalism and derive explicit expressions for its action on the holonomies of general closed curves on S_g. We prove that this action is generated via the Poisson bracket by a gauge invariant observable associated to the holonomy of λ\lambda. We deduce a symmetry relation between the Poisson brackets of observables associated to the Lorentz and translational components of the holonomies of general closed curves on S_g and discuss its physical interpretation. Finally, we relate the action of grafting on the phase space to the action of Dehn twists and show that grafting can be viewed as a Dehn twist with a formal parameter θ\theta satisfying θ2=0\theta^2=0.Comment: 43 pages, 10 .eps figures; minor modifications: 2 figures added, explanations added, typos correcte

    The Nature of the Hall Insulator

    Full text link
    We have conducted an experimental study of the linear transport properties of the magnetic-field induced insulating phase which terminates the quantum Hall (QH) series in two dimensional electron systems. We found that a direct and simple relation exists between measurements of the longitudinal resistivity, ρxx\rho_{xx}, in this insulating phase and in the neighboring QH phase. In addition, we find that the Hall resistivity, ρxy\rho_{xy}, can be quantized in the insulating phase. Our results indicate that a close relation exists between the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure

    Coulomb effects in tunneling through a quantum dot stack

    Full text link
    Tunneling through two vertically coupled quantum dots is studied by means of a Pauli master equation model. The observation of double peaks in the current-voltage characteristic in a recent experiment is analyzed in terms of the tunnel coupling between the quantum dots and the coupling to the contacts. Different regimes for the emitter chemical potential indicating different peak scenarios in the tunneling current are discussed in detail. We show by comparison with a density matrix approach that the interplay of coherent and incoherent effects in the stationary current can be fully described by this approach.Comment: 6 pages, 6 figure

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field BB^*, in agreement with our earlier work at lower fields. For a BB^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter BB^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error

    Abelian gauge potentials on cubic lattices

    Full text link
    The study of the properties of quantum particles in a periodic potential subject to a magnetic field is an active area of research both in physics and mathematics; it has been and it is still deeply investigated. In this review we discuss how to implement and describe tunable Abelian magnetic fields in a system of ultracold atoms in optical lattices. After discussing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold set-ups, we study cubic lattice tight-binding models with commensurate flux. We finally examine applications of gauge potentials in one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM series 201

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer

    Get PDF
    Purpose: To identify a profile of circulating tumor human papilloma virus (HPV) DNA (ctHPVDNA) clearance kinetics that is associated with disease control after chemoradiotherapy (CRT) for HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). Experimental Design: A multi-institutional prospective biomarker trial was conducted in 103 patients with (i) p16- positive OPSCC, (ii) M0 disease, and (iii) receipt of definitive CRT. Blood specimens were collected at baseline, weekly during CRT, and at follow-up visits. Optimized multianalyte digital PCR assays were used to quantify ctHPVDNA (types 16/18/31/33/35) in plasma. A control cohort of 55 healthy volunteers and 60 patients with non-HPV-associated malignancy was also analyzed. Results: Baseline plasma ctHPVDNA had high specificity (97%) and high sensitivity (89%) for detecting newly diagnosed HPV-associated OPSCC. Pretreatment ctHPV16DNA copy number correlated with disease burden, tumor HPV copy number, and HPV integration status. We define a ctHPV16DNA favorable clearance profile as having high baseline copy number (>200 copies/mL) and >95% clearance of ctHPV16DNA by day 28 of CRT. Nineteen of 67 evaluable patients had a ctHPV16DNA favorable clearance profile, and none had persistent or recurrent regional disease after CRT. In contrast, patients with adverse clinical risk factors (T4 or >10 pack years) and an unfavorable ctHPV16DNA clearance profile had a 35% actuarial rate of persistent or recurrent regional disease after CRT (P = 0.0049). Conclusions: A rapid clearance profile of ctHPVDNA may predict likelihood of disease control in patients with HPVassociated OPSCC patients treated with definitive CRT and may be useful in selecting patients for deintensified therapy
    corecore