419 research outputs found
Extension of geodesic algebras to continuous genus
Using the Penner--Fock parameterization for Teichmuller spaces of Riemann
surfaces with holes, we construct the string-like free-field representation of
the Poisson and quantum algebras of geodesic functions in the continuous-genus
limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy
Quantum geometry from 2+1 AdS quantum gravity on the torus
Wilson observables for 2+1 quantum gravity with negative cosmological
constant, when the spatial manifold is a torus, exhibit several novel features:
signed area phases relate the observables assigned to homotopic loops, and
their commutators describe loop intersections, with properties that are not yet
fully understood. We describe progress in our study of this bracket, which can
be interpreted as a q-deformed Goldman bracket, and provide a geometrical
interpretation in terms of a quantum version of Pick's formula for the area of
a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved
figures and extra figures. To appear GER
Geometrical (2+1)-gravity and the Chern-Simons formulation: Grafting, Dehn twists, Wilson loop observables and the cosmological constant
We relate the geometrical and the Chern-Simons description of
(2+1)-dimensional gravity for spacetimes of topology , where
is an oriented two-surface of genus , for Lorentzian signature and general
cosmological constant and the Euclidean case with negative cosmological
constant. We show how the variables parametrising the phase space in the
Chern-Simons formalism are obtained from the geometrical description and how
the geometrical construction of (2+1)-spacetimes via grafting along closed,
simple geodesics gives rise to transformations on the phase space. We
demonstrate that these transformations are generated via the Poisson bracket by
one of the two canonical Wilson loop observables associated to the geodesic,
while the other acts as the Hamiltonian for infinitesimal Dehn twists. For
spacetimes with Lorentzian signature, we discuss the role of the cosmological
constant as a deformation parameter in the geometrical and the Chern-Simons
formulation of the theory. In particular, we show that the Lie algebras of the
Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz
algebra over a commutative ring, characterised by a formal parameter
whose square is minus the cosmological constant. In this
framework, the Wilson loop observables that generate grafting and Dehn twists
are obtained as the real and the -component of a Wilson loop
observable with values in the ring, and the grafting transformations can be
viewed as infinitesimal Dehn twists with the parameter .Comment: 50 pages, 6 eps figure
Grafting and Poisson structure in (2+1)-gravity with vanishing cosmological constant
We relate the geometrical construction of (2+1)-spacetimes via grafting to
phase space and Poisson structure in the Chern-Simons formulation of
(2+1)-dimensional gravity with vanishing cosmological constant on manifolds of
topology , where is an orientable two-surface of genus
. We show how grafting along simple closed geodesics \lambda is
implemented in the Chern-Simons formalism and derive explicit expressions for
its action on the holonomies of general closed curves on S_g. We prove that
this action is generated via the Poisson bracket by a gauge invariant
observable associated to the holonomy of . We deduce a symmetry
relation between the Poisson brackets of observables associated to the Lorentz
and translational components of the holonomies of general closed curves on S_g
and discuss its physical interpretation. Finally, we relate the action of
grafting on the phase space to the action of Dehn twists and show that grafting
can be viewed as a Dehn twist with a formal parameter satisfying
.Comment: 43 pages, 10 .eps figures; minor modifications: 2 figures added,
explanations added, typos correcte
The Nature of the Hall Insulator
We have conducted an experimental study of the linear transport properties of
the magnetic-field induced insulating phase which terminates the quantum Hall
(QH) series in two dimensional electron systems. We found that a direct and
simple relation exists between measurements of the longitudinal resistivity,
, in this insulating phase and in the neighboring QH phase. In
addition, we find that the Hall resistivity, , can be quantized in
the insulating phase. Our results indicate that a close relation exists between
the conduction mechanism in the insulator and in the QH liquid.Comment: RevTeX, 4 pages, 4 figure
Coulomb effects in tunneling through a quantum dot stack
Tunneling through two vertically coupled quantum dots is studied by means of
a Pauli master equation model. The observation of double peaks in the
current-voltage characteristic in a recent experiment is analyzed in terms of
the tunnel coupling between the quantum dots and the coupling to the contacts.
Different regimes for the emitter chemical potential indicating different peak
scenarios in the tunneling current are discussed in detail. We show by
comparison with a density matrix approach that the interplay of coherent and
incoherent effects in the stationary current can be fully described by this
approach.Comment: 6 pages, 6 figure
Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass
Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T
pulsed magnetic fields. The CF effective mass is found to increase
approximately linearly with the effective field , in agreement with our
earlier work at lower fields. For a of 14 T it reaches , over 20
times the band edge electron mass. Data from all fractions are unified by the
single parameter for all the samples studied over a wide range of
electron densities. The energy gap is found to increase like at
high fields.Comment: Has final table, will LaTeX without error
Abelian gauge potentials on cubic lattices
The study of the properties of quantum particles in a periodic potential
subject to a magnetic field is an active area of research both in physics and
mathematics; it has been and it is still deeply investigated. In this review we
discuss how to implement and describe tunable Abelian magnetic fields in a
system of ultracold atoms in optical lattices. After discussing two of the main
experimental schemes for the physical realization of synthetic gauge potentials
in ultracold set-ups, we study cubic lattice tight-binding models with
commensurate flux. We finally examine applications of gauge potentials in
one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and
Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM
series 201
Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor
We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from
the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined
from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be
determined either from the time-like pion form factor or through the constraint
that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles.
The two procedures are inequivalent in practice, and we show why the first is
preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version
Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer
Purpose: To identify a profile of circulating tumor human papilloma virus (HPV) DNA (ctHPVDNA) clearance kinetics that is associated with disease control after chemoradiotherapy (CRT) for HPV-associated oropharyngeal squamous cell carcinoma (OPSCC). Experimental Design: A multi-institutional prospective biomarker trial was conducted in 103 patients with (i) p16- positive OPSCC, (ii) M0 disease, and (iii) receipt of definitive CRT. Blood specimens were collected at baseline, weekly during CRT, and at follow-up visits. Optimized multianalyte digital PCR assays were used to quantify ctHPVDNA (types 16/18/31/33/35) in plasma. A control cohort of 55 healthy volunteers and 60 patients with non-HPV-associated malignancy was also analyzed. Results: Baseline plasma ctHPVDNA had high specificity (97%) and high sensitivity (89%) for detecting newly diagnosed HPV-associated OPSCC. Pretreatment ctHPV16DNA copy number correlated with disease burden, tumor HPV copy number, and HPV integration status. We define a ctHPV16DNA favorable clearance profile as having high baseline copy number (>200 copies/mL) and >95% clearance of ctHPV16DNA by day 28 of CRT. Nineteen of 67 evaluable patients had a ctHPV16DNA favorable clearance profile, and none had persistent or recurrent regional disease after CRT. In contrast, patients with adverse clinical risk factors (T4 or >10 pack years) and an unfavorable ctHPV16DNA clearance profile had a 35% actuarial rate of persistent or recurrent regional disease after CRT (P = 0.0049). Conclusions: A rapid clearance profile of ctHPVDNA may predict likelihood of disease control in patients with HPVassociated OPSCC patients treated with definitive CRT and may be useful in selecting patients for deintensified therapy
- …