1,483 research outputs found

    Mapping a Continental Shelf and Slope in the 1990s: A Tale of Three Multibeams

    Get PDF
    Increasing societal pressures on the U.S. continental shelves adjacent to dense population centers have brought to light the lack of accurate base maps in these areas. Existing bathymetric maps and random sidescan sonar surveys are either not accurate enough or do not provide the coverage necessary to make policy decisions. Until the mid 1990s, it was not financially prudent nor technically efficient to map the shallow shelves. However, the availability of high-resolution multibeam mapping systems now allow efficient and accurate mapping of the continental margins. In 1996 the U.S. Geological Survey began a large-scale seafloor mapping campaign on the continental shelf and slope adjacent to Los Angeles, CA. The first survey used a Kongsberg Simrad EM1000 (95 kHz). The survey continued in 1998 by mapping the slope and proximal basins from Newport to Long Beach, CA, using a Kongsberg Simrad EM300 (30 kHz). The area was completed in May 1999 by mapping the entire shelf adjacent to Long Beach, CA using an EM3000D (a dual-headed 300-kHz system). The mapping used both INS from the vehicle motion sensor and DGPS to provide position accuracies of ~1 m. All the data were processed in the field in near realtime using software developed at the Univ. of New Brunswick. Because of the different systems used and the range of water depths, the spatial resolution of the processed data varies from \u3c0.5 m on the inner shelf to 8 m on the basin floors. Perspective overviews of backscatter draped over bathymetry reveals a host of geological features unknown to exist in this area. These features include shallow, linear gullys, barchan dunes, small-scale bedforms in shallow troughs, major canyon system complexes, large- and smallscale mass movements, faults, and large areas of outcrop. The effects on sediment transport of man-made features, such as sewer outfall pipes and dredge-disposal fields, are clearly delineated on the new maps. The maps provide the fundamental base maps for studies as varied as those involving benthic habitats, marine disposal sites, sediment transport, and tectonic ma

    Geometric and Radiometric Correction of Multibeam Backscatter Derived from Reson 8101 Systems

    Get PDF
    A common by-product of multibeam surveys is a measure of the backscattered acoustic intensity from the seafloor. These data are of immense interest to geologists and geoscientists since maps of the acoustic backscatter strength can be used to infer physical properties of the sea bottom, such as impedance, roughness and volume inhomogeneity. Before such maps can be created from multibeam acoustic backscatter data, however, two tasks must be performed. 1. The data must be geographically registered using the bathymetric profile collected by the multibeam (which accounts for full orientation and refraction), as opposed to using the traditional flat-seafloor assumption. This allows us to additionally calculate the true grazing angle. 2. The signal intensities must be reduced to as close a measure of the backscatter strength of the seafloor as possible by radiometrically correcting the data on a ping-by-ping basis for variables such as transmission power, beam pattern, receiver gain, and pulse length. The purpose of this research project is to develop software tools to perform the above corrections for a massive backlog of RESON SeaBat 8101 multibeam data, as collected by the NOAA ship Rainier. While the backscatter logged by the multibeam systems is not of prime importance to NOAA’s hydrographic charting mandate, they recognize the potential value of this data to the work of other sister agencies such as the U.S. Geological Survey (who is funding this project). The particular problems encountered with these data are that. Up to the end of 2001 field season, the backscatter data acquired by this system were collected from dedicated receiver beams, separate from those used for bathymetry. This receive beam is broad in the elevation plane (similar to a sidescan sonar) so that the variation in elevation angle with time must be indirectly inferred from the corresponding bathymetric profile. As some backscatter data are collected from slant-ranges beyond which bathymetric data are acquired, for that case the imaging geometry must be either inferred using a simple slope model, or derived from neighbouring swaths. Results of the application of full geometric and radiometric corrections will be presented

    Atomic position localization via dual measurement

    Get PDF
    We study localization of atomic position when a three-level atom interacts with a quantized standing-wave field in the Ramsey interferometer setup. Both the field quadrature amplitude and the atomic internal state are measured to obtain the atomic position information. It is found that this dual measurement scheme produces an interference pattern superimposed on a diffraction-like pattern in the atomic position distribution, where the former pattern originates from the state-selective measurement and the latter from the field measurement. The present scheme results in a better resolution in the position localization than the field-alone measurement schemes. We also discuss the measurement-correlated mechanical action of the standing-wave field on the atom in the light of Popper's test.Comment: 6.5 pages and 5 figure

    An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focused ion beam

    Get PDF
    A method for the rapid preparation of atom probe tomography (APT) needles using a xenon plasma-focused ion beam (FIB) instrument is presented and demonstrated on a test sample of Ti-6Al-4V alloy. The method requires significantly less operator input than the standard lift-out protocol, is site-specific and produces needles with minimal ion-beam damage; electron microscopy indicated the needle's surface amorphised/oxidised region to be less than 2 nm thick. The resulting needles were routinely analysable by APT, confirming the expected microstructure and showing negligible Xe contamination

    Similar dissection of sets

    Get PDF
    In 1994, Martin Gardner stated a set of questions concerning the dissection of a square or an equilateral triangle in three similar parts. Meanwhile, Gardner's questions have been generalized and some of them are already solved. In the present paper, we solve more of his questions and treat them in a much more general context. Let DRdD\subset \mathbb{R}^d be a given set and let f1,...,fkf_1,...,f_k be injective continuous mappings. Does there exist a set XX such that D=Xf1(X)...fk(X)D = X \cup f_1(X) \cup ... \cup f_k(X) is satisfied with a non-overlapping union? We prove that such a set XX exists for certain choices of DD and {f1,...,fk}\{f_1,...,f_k\}. The solutions XX often turn out to be attractors of iterated function systems with condensation in the sense of Barnsley. Coming back to Gardner's setting, we use our theory to prove that an equilateral triangle can be dissected in three similar copies whose areas have ratio 1:1:a1:1:a for a(3+5)/2a \ge (3+\sqrt{5})/2

    Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole

    Full text link
    We solve a class of boundary value problems for the stationary axisymmetric Einstein equations corresponding to a disk of dust rotating uniformly around a central black hole. The solutions are given explicitly in terms of theta functions on a family of hyperelliptic Riemann surfaces of genus 4. In the absence of a disk, they reduce to the Kerr black hole. In the absence of a black hole, they reduce to the Neugebauer-Meinel disk.Comment: 46 page

    The Generalized Dirichlet to Neumann map for the KdV equation on the half-line

    Full text link
    For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if qtq_{t} and qxxxq_{xxx} have the same sign (KdVI) or two boundary conditions if qtq_{t} and qxxxq_{xxx} have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)}\{q(x,0),q(0,t) \} and {q(x,0),q(0,t),qx(0,t)}\{q(x,0),q(0,t),q_{x}(0,t) \} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {qx(0,t),qxx(0,t)}\{q_{x}(0,t),q_{xx}(0,t) \} and {qxx(0,t)}\{q_{xx}(0,t) \}, respectively. We show that this can be achieved without solving for q(x,t)q(x,t) by analysing a certain ``global relation'' which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ(t)(t,k)\Phi^{(t)}(t,k), where Φ(t)\Phi^{(t)} satisifies the tt-part of the associated Lax pair evaluated at x=0x=0. Indeed, by employing a Gelfand--Levitan--Marchenko triangular representation for Φ(t)\Phi^{(t)}, the global relation can be solved \emph{explicitly} for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ(t)\Phi^{(t)}. This yields the unknown boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure

    Higher meson resonances in ρπ0π0γ\rho \to \pi^0 \pi^0 \gamma and ωπ0π0γ\omega \to \pi^0 \pi^0 \gamma

    Full text link
    The role of higher meson resonances with spin 1 and 2 is investigated quantitatively in the decay processes of ρπ0π0γ\rho \to \pi^0\pi^0 \gamma and ωπ0π0γ\omega \to \pi^0 \pi^0 \gamma. Among the higher resonances, we find that the f2(1270)f_2(1270) tensor meson can give a nontrivial contribution especially to the ωπ0π0γ\omega \to \pi^0 \pi^0 \gamma decay process. When the f2f_2 contribution is combined with the processes involving the vector and scalar meson intermediate states, a good agreement with the recent measurements is achieved for both decays. The effect of the f2(1270)f_2(1270) is found to be sizable at the intermediate photon energies and may be verified by precise measurements of the recoil photon spectrum of the ωπ0π0γ\omega \to \pi^0 \pi^0 \gamma decay. The dependence of the decay widths on various models for the ρ\rho-ω\omega mixing in the literature is also investigated.Comment: 16 pages, REVTeX, 6 figures, revised version, to appear in Phys. Rev.

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
    corecore