684 research outputs found

    Comparison of Theoretical and Experimental Bending and Torsional Moments of Endodontic Files and Reamers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67347/2/10.1177_00220345670460051101.pd

    The relationship between fetal growth and retinal nerve fiber layer thickness in a cohort of young adults

    Get PDF
    Purpose: To explore relationships between patterns of fetal anthropometric growth, as reflective of fetal wellbeing, and global retinal nerve fiber layer (RNFL) thickness measured in young adulthood. Methods: Participants (n = 481) from within a Western Australian pregnancy cohort study underwent five serial ultrasound scans during gestation, with fetal biometry measured at each scan. Optic disc parameters were measured via spectral-domain optical coherence tomography imaging at a 20-year follow-up eye examination. Generalized estimating equations were used to evaluate differences in global RNFL thickness between groups of participants who had undergone similar growth trajectories based on fetal head circumference (FHC), abdominal circumference (FAC), femur length (FFL), and estimated fetal weight (EFW). Results: Participants with consistently large FHCs throughout gestation had significantly thicker global RNFLs than those with any other pattern of FHC growth (P = 0.023), even after adjustment for potential confounders (P = 0.037). Based on model fit statistics, FHC growth trajectory was a better predictor of global RNFL thickness than birth weight or head circumference at birth. RNFL thickness did not vary significantly between groups of participants with different growth trajectories based on FAC, FFL, or EFW. Conclusions: FHC growth is associated with RNFL thickness in young adulthood and, moreover, is a better predictor than either birth weight or head circumference at birth. Translational Relevance: This research demonstrates an association between intrauterine growth and long-term optic nerve health, providing a basis for further exploring the extent of the influence of fetal wellbeing on clinical conditions linked to RNFL thinning

    Renormalization of the Lattice HQET Isgur-Wise Function

    Get PDF
    We compute the perturbative renormalization factors required to match to the continuum Isgur-Wise function, calculated using lattice Heavy Quark Effective Theory. The velocity, mass, wavefunction and current renormalizations are calculated for both the forward difference and backward difference actions for a variety of velocities. Subtleties are clarified regarding tadpole improvement, regulating divergences, and variations of techniques used in these renormalizations.Comment: 28 pages, 0 figures, LaTeX. Final version accepted for publication in Phys. Rev. D. (Minor changes.

    Localization Properties of the Chalker-Coddington Model

    Full text link
    The Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove firstly that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly that this implies spectral localization. Thirdly we prove a Thouless formula and compute the mean Lyapunov exponent which is independent of M.Comment: 29 pages, 1 figure. New section added in which simplicity of the Lyapunov spectrum and finiteness of the localization length are proven. To appear in Annales Henri Poincar

    Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils

    Get PDF
    Soil surface roughness (SSR), a description of the micro-relief of soils, affects the surface storage capacity of soils, influences the threshold flow for wind and water erosion and determines interactions and feedback processes between the terrestrial and atmospheric systems at a range of scales. Rainfall is an important determinant of SSR as it can cause the dislocation, reorientation and packing of soil particles and may result in the formation of physical soil crusts which can, in turn, affect the roughness and hydrological properties of soils. This paper describes an experiment to investigate the impact of a multi-day rainfall event on the SSR and physical crusting of very fine soils with low organic matter content, typical of a semi-arid environment. Changes in SSR are quantified using geostatistically-derived indicators calculated from semivariogram analysis of high resolution laser scans of the soil surface captured at a horizontal resolution of 78 ÎŒm (0.078 mm) and a vertical resolution of 12 ÎŒm (0.012 mm). Application of 2 mm, 5 mm and 2 mm of rainfall each separated by a 24 h drying period resulted in soils developing a structural two-layered ‘sieving’ crust characterised by a sandy micro-layer at the surface overlying a thin seal of finer particles. Analysis of the geostatistics and soil characteristics (e.g. texture, surface resistance, infiltration rate) suggests that at this scale of enquiry, and for low rainfall amounts, both the vertical and horizontal components of SSR are determined by raindrop impact rather than aggregate breakdown. This is likely due to the very fine nature of the soils and the low rainfall amounts applied

    Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains

    Get PDF
    The metacommunity concept provides a useful framework to assess the influence of local and regional controls over diversity patterns. Culture‐independent studies of soil microbial communities in the McMurdo Dry Valleys of East Antarctica (77° S) have shown that bacterial diversity is related to soil geochemical gradients, while studies targeting edaphic cyanobacteria have linked local diversity patterns to dispersal‐based processes. In this study, we increased the spatial extent of observed soil microbial communities to cover the Beardmore Glacier region in the central Transantarctic Mountains (84° S). We used community profiling techniques to characterize diversity patterns for bacteria and the cyanobacterial subcomponent of the microbial community. Diversity partitioning was used to calculate beta diversity and estimate among‐site dissimilarity in the metacommunity. We then used variation partitioning to assess the relationship between beta diversity and environmental and spatial gradients. We found that dominant groups in the soil bacterial metacommunity were influenced by gradients in pH and soil moisture at the Transantarctic scale (800 km). Conversely, beta diversity for the cyanobacterial component of the edaphic microbial metacommunity was decoupled from these environmental gradients, and was more related to spatial filters, suggesting that wind‐driven dispersal dynamics created cyanobacterial biogeography at a local scale (<3 km)

    Risk stratification and clinical utility of polygenic risk scores in ophthalmology

    Get PDF
    Combining genetic and clinical data into an informative risk prediction profile has been an important ambition of personalized medicine. Single-nucleotide polymorphisms are commonly found throughout the genome and account for the majority of interindividual genetic variation. To date, genome-wide association studies have led to the discovery of thousands of disease-associated loci, including across dozens of ophthalmic diseases and traits. However, compared with the clinical utility of identifying rare Mendelian variants, the translation of these results to clinical practice has so far been limited because such variants are found commonly in the population, and individually account for a very small risk. Recently, combining large numbers of these genetic variants into polygenic risk scores (PRS) has shown clinically meaningful risk prediction across several common diseases. PRS have the potential to translate the discovery of common risk variants into individualized disease risk prediction, prognostication, and may enable targeted treatments. In this context, we review the clinical utility of PRS in three common, genetically complex ophthalmic conditions: primary open angle glaucoma, age-related macular degeneration, and myopia. Translational Relevance: Common genetic variants can be used to effectively stratify the risk of disease development and progression and may be used to guide screening, triaging, monitoring, or treatment thresholds.Ayub Qassim, Emmanuelle Souzeau, Georgie Hollitt, Mark M. Hassall, Owen M. Siggs, and Jamie E. Crai

    Guidelines for Affirmative Social Work Education: Enhancing the Climate for LGBQQ Students, Staff, and Faculty in Social Work Education

    Get PDF
    This report is intended to provide guidelines for the creation of social work educational environments that are affirmative of lesbian, gay, bisexual, queer, and questioning (LGBQQ) students, faculty, administrators, and staff. Creating affirmative social work educational environments for transgender and gender nonconforming populations is addressed in a companion document, Guidelines for Transgender and Gender Nonconforming (TGNC) Inclusive Social Work Education

    Arp2/3 Complex Is Required for Macrophage Integrin Functions but Is Dispensable for FcR Phagocytosis and In Vivo Motility

    Get PDF
    The Arp2/3 complex nucleates branched actin, forming networks involved in lamellipodial protrusion, phagocytosis, and cell adhesion. We derived primary bone marrow macrophages lacking Arp2/3 complex (Arpc2−/−) and directly tested its role in macrophage functions. Despite protrusion and actin assembly defects, Arpc2−/− macrophages competently phagocytose via FcR and chemotax toward CSF and CX3CL1. However, CR3 phagocytosis and fibronectin haptotaxis, both integrin-dependent processes, are disrupted. Integrin-responsive actin assembly and αM/ÎČ2 integrin localization are compromised in Arpc2−/− cells. Using an in vivo system to observe endogenous monocytes migrating toward full-thickness ear wounds we found that Arpc2−/− monocytes maintain cell speeds and directionality similar to control. Our work reveals that the Arp2/3 complex is not a general requirement for phagocytosis or chemotaxis but is a critical driver of integrin-dependent processes. We demonstrate further that cells lacking Arp2/3 complex function in vivo remain capable of executing important physiological responses that require rapid directional motility. Using a combination of cell culture-based and in vivo mouse experiments, Rotty et al. demonstrate that the actin-nucleating Arp2/3 complex is not absolutely required for macrophage FcR phagocytosis, chemotaxis, or in vivo monocyte directional motility. Rather, the complex has a critical role in regulating integrin-dependent macrophage processes

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia
    • 

    corecore