496 research outputs found

    Nutrition and physical fitness of white, coloured, and bantu high-school children

    Get PDF
    Click on the link to view

    Mapping arctic tundra vegetation communities using field spectroscopy and multispectral satellite data in North Alaska, USA

    Get PDF
    The Arctic is currently undergoing intense changes in climate; vegetation composition and productivity are expected to respond to such changes. To understand the impacts of climate change on the function of Arctic tundra ecosystems within the global carbon cycle, it is crucial to improve the understanding of vegetation distribution and heterogeneity at multiple scales. Information detailing the fine-scale spatial distribution of tundra communities provided by high resolution vegetation mapping, is needed to understand the relative contributions of and relationships between single vegetation community measurements of greenhouse gas fluxes (e.g., ~1 m chamber flux) and those encompassing multiple vegetation communities (e.g., ~300 m eddy covariance measurements). The objectives of this study were: (1) to determine whether dominant Arctic tundra vegetation communities found in different locations are spectrally distinct and distinguishable using field spectroscopy methods; and (2) to test which combination of raw reflectance and vegetation indices retrieved from field and satellite data resulted in accurate vegetation maps and whether these were transferable across locations to develop a systematic method to map dominant vegetation communities within larger eddy covariance tower footprints distributed along a 300 km transect in northern Alaska. We showed vegetation community separability primarily in the 450-510 nm, 630-690 nm and 705-745 nm regions of the spectrum with the field spectroscopy data. This is line with the different traits of these arctic tundra communities, with the drier, often non-vascular plant dominated communities having much higher reflectance in the 450-510 nm and 630-690 nm regions due to the lack of photosynthetic material, whereas the low reflectance values of the vascular plant dominated communities highlight the strong light absorption found here. High classification accuracies of 92% to 96% were achieved using linear discriminant analysis with raw and rescaled spectroscopy reflectance data and derived vegetation indices. However, lower classification accuracies (~70%) resulted when using the coarser 2.0 m WorldView-2 data inputs. The results from this study suggest that tundra vegetation communities are separable using plot-level spectroscopy with hand-held sensors. These results also show that tundra vegetation mapping can be scaled from the plot level (<1 m) to patch level (<500 m) using spectroscopy data rescaled to match the wavebands of the multispectral satellite remote sensing. We find that developing a consistent method for classification of vegetation communities across the flux tower sites is a challenging process, given thespatial variability in vegetation communities and the need for detailed vegetation survey data for training and validating classification algorithms. This study highlights the benefits of using fine-scale field spectroscopy measurements to obtain tundra vegetation classifications for landscape analyses and use in carbon flux scaling studies. Improved understanding of tundra vegetation distributions will also provide necessary insight into the ecological processes driving plant community assemblages in Arctic environments

    Constraints on the Local Sources of Ultra High-Energy Cosmic Rays

    Full text link
    Ultra high-energy cosmic rays (UHECRs) are believed to be protons accelerated in magnetized plasma outflows of extra-Galactic sources. The acceleration of protons to ~10^{20} eV requires a source power L>10^{47} erg/s. The absence of steady sources of sufficient power within the GZK horizon of 100 Mpc, implies that UHECR sources are transient. We show that UHECR "flares" should be accompanied by strong X-ray and gamma-ray emission, and that X-ray and gamma-ray surveys constrain flares which last less than a decade to satisfy at least one of the following conditions: (i) L>10^{50} erg/s; (ii) the power carried by accelerated electrons is lower by a factor >10^2 than the power carried by magnetic fields or by >10^3 than the power in accelerated protons; or (iii) the sources exist only at low redshifts, z<<1. The implausibility of requirements (ii) and (iii) argue in favor of transient sources with L>10^{50} erg/s.Comment: 7 pages, 1 figure, submitted to JCA

    Meson Cloud of the Nucleon in Polarized Semi-Inclusive Deep-Inelastic Scattering

    Get PDF
    We investigate the possibility of identifying an explicit pionic component of the nucleon through measurements of polarized Δ++\Delta^{++} baryon fragments produced in deep-inelastic leptoproduction off polarized protons, which may help to identify the physical mechanism responsible for the breaking of the Gottfried sum rule. The pion-exchange model predicts highly correlated polarizations of the Δ++\Delta^{++} and target proton, in marked contrast with the competing diquark fragmentation process. Measurement of asymmetries in polarized Λ\Lambda production may also reveal the presence of a kaon cloud in the nucleon.Comment: 23 pages REVTeX, 7 uuencoded figures, accepted for publication in Zeit. Phys.

    Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study

    Full text link
    The effect of stress-triaxiality on growth of a void in a three dimensional single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular dynamics (MD) simulations using an embedded-atom (EAM) potential for copper have been performed at room temperature and using strain controlling with high strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these magnitudes can be studied experimentally, e.g. using shock waves induced by laser ablation. Void growth has been simulated in three different conditions, namely uniaxial, biaxial, and triaxial expansion. The response of the system in the three cases have been compared in terms of the void growth rate, the detailed void shape evolution, and the stress-strain behavior including the development of plastic strain. Also macroscopic observables as plastic work and porosity have been computed from the atomistic level. The stress thresholds for void growth are found to be comparable with spall strength values determined by dynamic fracture experiments. The conventional macroscopic assumption that the mean plastic strain results from the growth of the void is validated. The evolution of the system in the uniaxial case is found to exhibit four different regimes: elastic expansion; plastic yielding, when the mean stress is nearly constant, but the stress-triaxiality increases rapidly together with exponential growth of the void; saturation of the stress-triaxiality; and finally the failure.Comment: 35 figures, which are small (and blurry) due to the space limitations; submitted (with original figures) to Physical Review B. Final versio

    Fermi-Dirac Distributions for Quark Partons

    Full text link
    We propose to use Fermi-Dirac distributions for quark and antiquark partons. It allows a fair description of the xx-dependence of the very recent NMC data on the proton and neutron structure functions F2p(x)F_2^p(x) and F2n(x)F_2^n(x) at Q2=4Q^2=4 GeV2^2, as well as the CCFR antiquark distribution xq(x)x\overline q(x). We show that one can also use a corresponding Bose-Einstein expression to describe consistently the gluon distribution. The Pauli exclusion principle, which has been identified to explain the flavor asymmetry of the light-quark sea of the proton, is advocated to guide us for making a simple construction of the polarized parton distributions. We predict the spin dependent structure functions g1p(x)g_1^p(x) and g1n(x)g_1^n(x) in good agreement with EMC and SLAC data. The quark distributions involve some parameters whose values support well the hypothesis that the violation of the quark parton model sum rules is a consequence of the Pauli principle.Comment: 12 pages,CPT-93/P.2961,latex,6 fig available on cpt.univ-mrs.fr directory pub/preprints/93/fundamental-interactions/93-P.296

    Effects of follicular phase exercise on luteinizing hormone pulse characteristics in sedentary eumenorrhoeic women

    Full text link
    OBJECTIVE Current studies reveal little regarding the Inception of exercise-induced LH changes during physical training. This study aimed to assess the susceptibility of the hypothalamic–pituitary axis to the acute physical stress of exercise in untrained, physically inactive women. The acute effects of submaximal endurance exercise upon the pulsatile LH secretion in the follicular phase were compared with those accompanying leisurely strolling for a similar time period. SUBJECTS All subjects were eumenorrhoelc, as determined by biphasic temperature patterns, detection of the urinary LH surge, and mid-luteal serum progesterone levels. Subjects were not physically active and had little history of strenuous exercise ( V o 2 max = 38·0 ± 1·8) (mean ± SEM) ml/kg/min). DESIGN All women completed a 13·5-hour pulsatility test which included three consecutive 20-minute runs on a treadmill at 50, 60 and 70% of the subjects’maximum oxygen uptake ( n = 16). Six of these same subjects completed a separate test on another occasion in which one hour of leisurely strolling was substituted for exercise. Blood was sampled every 10 minutes via an indwelling cannula for 4·5 hours before and 8 hours after one hour of exercise and or strolling. MEASUREMENTS A pulse algorithm (Pulsar) was used to quantify LH pulse characteristics. RESULTS Exercise produced no significant effects upon LH pulse frequency or mean serum LH concentration. However, exercise of moderate intensity caused a significant increase in LH pulse amplitude ( P < 0·05). Strolling produced no significant changes in LH secretion. CONCLUSION Acute exercise of moderate intensity in the follicular phase of untrained women is an insufficient stimulus to inhibit the GnRH pulse generator in the post-exercise period, yet may produce a slight stimulatory effect on the amount of LH released per pulsePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73507/1/j.1365-2265.1994.tb02794.x.pd

    Fermi-Dirac statistics plus liquid description of quark partons

    Get PDF
    A previous approach with Fermi-Dirac distributions for fermion partons is here improved to comply with the expected low xx behaviour of structure functions. We are so able to get a fair description of the unpolarized and polarized structure functions of the nucleons as well as of neutrino data. We cannot reach definite conclusions, but confirm our suspicion of a relationship between the defects in Gottfried and spin sum rules.Comment: 15 pages, plain LaTex, 10 compressed tarred uuencoded figures in a separate fil

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table
    corecore