1,974 research outputs found
Molecular dynamic simulation of a homogeneous bcc -> hcp transition
We have performed molecular dynamic simulations of a Martensitic bcc->hcp
transformation in a homogeneous system. The system evolves into three
Martensitic variants, sharing a common nearest neighbor vector along a bcc
direction, plus an fcc region. Nucleation occurs locally, followed by
subsequent growth. We monitor the time-dependent scattering S(q,t) during the
transformation, and find anomalous, Brillouin zone-dependent scattering similar
to that observed experimentally in a number of systems above the transformation
temperature. This scattering is shown to be related to the elastic strain
associated with the transformation, and is not directly related to the phonon
response.Comment: 11 pages plus 8 figures (GIF format); to appear in Phys. Rev.
Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model
This paper describes the application of finite-size scaling concepts to
domain growth in systems with a non-conserved order parameter. A finite-size
scaling ansatz for the time-dependent order parameter distribution function is
proposed, and tested with extensive Monte-Carlo simulations of domain growth in
the 2-D spin-flip kinetic Ising model. The scaling properties of the
distribution functions serve to elucidate the configurational self-similarity
that underlies the dynamic scaling picture. Moreover, it is demonstrated that
the application of finite-size-scaling techniques facilitates the accurate
determination of the bulk growth exponent even in the presence of strong
finite-size effects, the scale and character of which are graphically exposed
by the order parameter distribution function. In addition it is found that one
commonly used measure of domain size--the scaled second moment of the
magnetisation distribution--belies the full extent of these finite-size
effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401
Rotating Black Branes in the presence of nonlinear electromagnetic field
In this paper, we consider a class of gravity whose action represents itself
as a sum of the usual Einstein-Hilbert action with cosmological constant and an
gauge field for which the action is given by a power of the Maxwell
invariant. We present a class of the rotating black branes with Ricci flat
horizon and show that the presented solutions may be interpreted as black brane
solutions with two event horizons, extreme black hole and naked singularity
provided the parameters of the solutions are chosen suitably. We investigate
the properties of the solutions and find that for the special values of the
nonlinear parameter, the solutions are not asymptotically anti-deSitter. At
last, we obtain the conserved quantities of the rotating black branes and find
that the nonlinear source effects on the electric field, the behavior of
spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ
Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study
We study the temperature-dilution phase diagram of a site-diluted Heisenberg
antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya
anisotropic term, fixed to realistic microscopic parameters for (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy
induces a finite-temperature phase transition to a spin glass phase, at
dilutions larger than 80%. The resulting probability distribution of the order
parameter P(q) is similar to the one found in the cubic lattice
Edwards-Anderson Ising model. The critical exponents undergo large finite size
corrections, but tend to values similar to the ones of the
Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure
Photon mixing in universes with large extra-dimensions
In presence of a magnetic field, photons can mix with any particle having a
two-photon vertex. In theories with large compact extra-dimensions, there
exists a hierachy of massive Kaluza-Klein gravitons that couple to any photon
entering a magnetic field. We study this mixing and show that, in comparison
with the four dimensional situation where the photon couples only to the
massless graviton, the oscillation effect may be enhanced due to the existence
of a large number of Kaluza-Klein modes. We give the conditions for such an
enhancement and then investigate the cosmological and astrophysical
consequences of this phenomenon; we also discuss some laboratory experiments.
Axions also couple to photons in the same way; we discuss the effect of the
existence of bulk axions in universes with large extra-dimensions. The results
can also be applied to neutrino physics with extra-dimensions.Comment: 41 pages, LaTex, 6 figure
Wormholes and Flux Tubes in 5D Kaluza-Klein Theory
In this paper spherically symmetric solutions to 5D Kaluza-Klein theory, with
``electric'' and/or ``magnetic'' fields are investigated. It is shown that the
global structure of the spacetime depends on the relation between the
``electrical'' and ``magnetic'' Kaluza-Klein fields. For small ``magnetic''
field we find a wormhole-like solution. As the strength of the ``magnetic''
field is increased relative to the strength of the ``electrical'' field, the
wormhole-like solution evolves into a finite or infinite flux tube depending on
the strengths of the two fields. For the large ``electric'' field case we
conjecture that this solution can be considered as the mouth of a wormhole,
with the , and components of the metric acting as
the source of the exotic matter necessary for the formation of the wormhole's
mouth. For the large ``magnetic'' field case a 5D flux tube forms, which is
similar to the flux tube between two monopoles in Type-II superconductors, or
the hypothesized color field flux tube between two quarks in the QCD vacuum.Comment: 12 pages, 5 eps.figures, REVTEX, Discussion about null surfaces
ammended. References added. To be published in PR
New Lump-like Structures in Scalar-field Models
In this work we investigate lump-like solutions in models described by a
single real scalar field. We start considering non-topological solutions with
the usual lump-like form, and then we study other models, where the bell-shape
profile may have varying amplitude and width, or develop a flat plateau at its
top, or even induce a lump on top of another lump. We suggest possible
applications where these exotic solutions might be used in several distinct
branches of physics.Comment: REvTex4, twocolumn, 10 pages, 9 figures; new reference added, to
appear in EPJ
Generalized Global Defect Solutions
We investigate the presence of defect structures in generalized models
described by real scalar field in space-time dimensions. We work with
two distinct generalizations, one in the form of a product of functions of the
field and its derivative, and the other as a sum. We search for static
solutions and study the corresponding linear stability on general grounds. We
illustrate the results with several examples, where we find stable defect
structures of modified profile. In particular, we show how the new defect
solutions may give rise to evolutions not present in the standard scenario in
higher spatial dimensions.Comment: RevTex, 10 pages, 2 figures; version to appear in EPJ
Wormholes and Ringholes in a Dark-Energy Universe
The effects that the present accelerating expansion of the universe has on
the size and shape of Lorentzian wormholes and ringholes are considered. It is
shown that, quite similarly to how it occurs for inflating wormholes, relative
to the initial embedding-space coordinate system, whereas the shape of the
considered holes is always preserved with time, their size is driven by the
expansion to increase by a factor which is proportional to the scale factor of
the universe. In the case that dark energy is phantom energy, which is not
excluded by present constraints on the dark-energy equation of state, that size
increase with time becomes quite more remarkable, and a rather speculative
scenario is here presented where the big rip can be circumvented by future
advanced civilizations by utilizing sufficiently grown up wormholes and
ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
Wormhole Geometries In Gravity
We study wormhole solutions in the framework of f (R,T) gravity where R is
the scalar curvature, and T is the trace of the stress-energy tensor of the
matter. We have obtained the shape function of the wormhole by specifying an
equation of state for the matter field and imposing the flaring out condition
at the throat. We show that in this modified gravity scenario, the matter
threading the wormhole may satisfy the energy conditions, so it is the
effective stress-energy that is responsible for violation of the null energy
condition.Comment: 9 pages, 4 figures, published version, references adde
- …
