287 research outputs found

    Sea hare <i>Aplysia punctata</i> (Mollusca: Gastropoda) can maintain shell calcification under extreme ocean acidification

    Get PDF
    Ocean acidification is expected to cause energetic constraints upon marine calcifying organisms such as molluscs and echinoderms, because of the increased costs of building or maintaining shell material in lower pH. We examined metabolic rate, shell morphometry, and calcification in the sea hare Aplysia punctata under short-term exposure (19 days) to an extreme ocean acidification scenario (pH 7.3, ∼2800 μatm pCO2), along with a group held in control conditions (pH 8.1, ∼344 μatm pCO2). This gastropod and its congeners are broadly distributed and locally abundant grazers, and have an internal shell that protects the internal organs. Specimens were examined for metabolic rate via closed-chamber respirometry, followed by removal and examination of the shell under confocal microscopy. Staining using calcein determined the amount of new calcification that occurred over 6 days at the end of the acclimation period. The width of new, pre-calcified shell on the distal shell margin was also quantified as a proxy for overall shell growth. Aplysia punctata showed a 30% reduction in metabolic rate under low pH, but calcification was not affected. This species is apparently able to maintain calcification rate even under extreme low pH, and even when under the energetic constraints of lower metabolism. This finding adds to the evidence that calcification is a largely autonomous process of crystallization that occurs as long as suitable haeomocoel conditions are preserved. There was, however, evidence that the accretion of new, noncalcified shell material may have been reduced, which would lead to overall reduced shell growth under longer-term exposures to low pH independent of calcification. Our findings highlight that the chief impact of ocean acidification upon the ability of marine invertebrates to maintain their shell under low pH may be energetic constraints that hinder growth of supporting structure, rather than maintenance of calcification

    On a universal photonic tunnelling time

    Full text link
    We consider photonic tunnelling through evanescent regions and obtain general analytic expressions for the transit (phase) time Ï„\tau (in the opaque barrier limit) in order to study the recently proposed ``universality'' property according to which Ï„\tau is given by the reciprocal of the photon frequency. We consider different physical phenomena (corresponding to performed experiments) and show that such a property is only an approximation. In particular we find that the ``correction'' factor is a constant term for total internal reflection and quarter-wave photonic bandgap, while it is frequency-dependent in the case of undersized waveguide and distributed Bragg reflector. The comparison of our predictions with the experimental results shows quite a good agreement with observations and reveals the range of applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new experiment analyzed, some other minor change

    The resultant on compact Riemann surfaces

    Full text link
    We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the exponential transform of a quadrature domain in the complex plane is expressed in terms of the resultant of two meromorphic functions on the Schottky double of the domain.Comment: 44 page

    Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    Get PDF
    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management

    Development of Bubble Chambers With Enhanced Stability and Sensitivity to Low-Energy Nuclear Recoils

    Full text link
    The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF3ICF_{3}I chamber.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let

    Maternal distress and perceptions of infant development following extracorporeal membrane oxygenation and conventional ventilation for persistent pulmonary hypertension

    Full text link
    Neurodevelopmental outcome and concurrent maternal distress were examined for infants who suffered persistent pulmonary hypertension at birth and were treated with either extracorporeal membrane oxygenation (ECMO) ( n = 19) or conventional ventilation (CV) ( n = 15). Mothers were asked to complete inventories assessing their infant's (mean age 8.74 months) developmental growth as well as their own psychological health. Relevant sociodemographic and treatment parameters were also entered into the analysis. The results indicated that ECMO and CV infants did not differ on developmental indices and impairment rates were 15–23% respectively, similar to previous reports, in addition, ECMO and CV mothers did not differ in their reports of psychological distress. Correlational analyses revealed that length of treatment for ECMO but not CV infants significantly predicted developmental delay and maternal distress. For CV mothers, maternal distress was associated with the perception of delayed language. The results are discussed in terms of the limited morbidity associated with ECMO and CV interventions and the possible role of a ‘vulnerable child syndrome’ in understanding the maternal-infant relationship following ECMO therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73367/1/j.1365-2214.1995.tb00410.x.pd
    • …
    corecore