10 research outputs found

    Evolution models for mass transportation problems

    Full text link
    We present a survey on several mass transportation problems, in which a given mass dynamically moves from an initial configuration to a final one. The approach we consider is the one introduced by Benamou and Brenier in [5], where a suitable cost functional F(ρ,v)F(\rho,v), depending on the density ρ\rho and on the velocity vv (which fulfill the continuity equation), has to be minimized. Acting on the functional FF various forms of mass transportation problems can be modeled, as for instance those presenting congestion effects, occurring in traffic simulations and in crowd motions, or concentration effects, which give rise to branched structures.Comment: 16 pages, 14 figures; Milan J. Math., (2012

    Numerical analysis of an inverse problem for the eikonal equation

    Get PDF
    We are concerned with the inverse problem for an eikonal equation of determining the speed function using observations of the arrival time on a fixed surface. This is formulated as an optimisation problem for a quadratic functional with the state equation being the eikonal equation coupled to the so-called Soner boundary condition. The state equation is discretised by a suitable finite difference scheme for which we obtain existence, uniqueness and an error bound. We set up an approximate optimisation problem and show that a subsequence of the discrete mimina converges to a solution of the continuous optimisation problem as the mesh size goes to zero. The derivative of the discrete functional is calculated with the help of an adjoint equation which can be solved efficiently by using fast marching techniques. Finally we describe some numerical results

    A comparison of two dual methods for discrete optimal transport

    No full text
    International audienceThe goal of this expository article is to present and compare two dual methods that have been proposed independently for computing solutions of the discrete or semi-discrete instances of optimal transport

    Regularized Discrete Optimal Transport

    Get PDF
    This article introduces a generalization of the discrete optimal transport, with applications to color image manipulations. This new formulation includes a relaxation of the mass conservation constraint and a regularization term. These two features are crucial for image processing tasks, which necessitate to take into account families of multimodal histograms, with large mass variation across modes. The corresponding relaxed and regularized transportation problem is the solution of a convex optimization problem. Depending on the regularization used, this minimization can be solved using standard linear programming methods or first order proximal splitting schemes. The resulting transportation plan can be used as a color transfer map, which is robust to mass variation across images color palettes. Furthermore, the regularization of the transport plan helps to remove colorization artifacts due to noise amplification. We also extend this framework to the computation of barycenters of distributions. The barycenter is the solution of an optimization problem, which is separately convex with respect to the barycenter and the transportation plans, but not jointly convex. A block coordinate descent scheme converges to a stationary point of the energy. We show that the resulting algorithm can be used for color normalization across several images. The relaxed and regularized barycenter defines a common color palette for those images. Applying color transfer toward this average palette performs a color normalization of the input images.Sparsity, Image and Geometry to Model Adaptively Visual Processing

    A primal-dual approach for a total variation Wasserstein flow

    No full text
    We consider a nonlinear fourth-order diffusion equation that arises in denoising of image densities. We propose an implicit time-stepping scheme that employs a primal-dual method for computing the subgradient of the total variation semi-norm. The constraint on the dual variable is relaxed by adding a penalty term, depending on a parameter that determines the weight of the penalisation. The paper is furnished with some numerical examples showing the denoising properties of the model considered

    Hamilton–Jacobi–Bellman Equations

    No full text
    International audienceIn this chapter we present recent developments in the theory of Hamilton–Jacobi–Bellman (HJB) equations as well as applications. The intention of this chapter is to exhibit novel methods and techniques introduced few years ago in order to solve long-standing questions in nonlinear optimal control theory of Ordinary Differential Equations (ODEs)
    corecore