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Numerical analysis of an inverse problem for the eikonal

equation

Klaus Deckelnick∗, Charles M. Elliott†and Vanessa Styles‡

Abstract

We are concerned with the inverse problem for an eikonal equation of determining
the speed function using observations of the arrival time on a fixed surface. This is
formulated as an optimisation problem for a quadratic functional with the state equa-
tion being the eikonal equation coupled to the so–called Soner boundary condition.
The state equation is discretised by a suitable finite difference scheme for which we
obtain existence, uniqueness and an error bound. We set up an approximate optimi-
sation problem and show that a subsequence of the discrete mimina converges to a
solution of the continuous optimisation problem as the mesh size goes to zero. The
derivative of the discrete functional is calculated with the help of an adjoint equation
which can be solved efficiently by using fast marching techniques. Finally we describe
some numerical results.

AMS: 49J20, 49L25, 49M25

1 Introduction

Let Ω ⊂ Rn be an open bounded domain with a Lipschitz boundary Γ and x0 ∈ Ω be
fixed. For a continuous, positive function a : Ω̄ → R and x ∈ Ω̄, x 6= x0 we consider the
minimisation problem

inf{
∫ 1

0
a(ξ(r))|ξ′(r)|dr | ξ ∈W 1,∞([0, 1], Ω̄), ξ(0) = x0, ξ(1) = x}. (1.1)

Its optimal value, u(x), gives the shortest travel time of the path connecting x0 to x in
Ω̄ with underlying velocity c(x) = 1

a(x) . An important problem in various applications,
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e.g. tomography, consists in reconstructing the slowness function a from measured first
arrival times on a suitable subset of Γ. A common approach to solve this inverse problem
aims at minimising the misfit between the measured data and computed traveltimes, that
are obtained from integrating the Euler-Lagrange equation corresponding to (1.1), see e.g.
[6, 19]. A more recent approach, see e.g. [13], makes use of the fact that the optimal value
function for (1.1) formally is a solution of the following eikonal equation, see [12],

|∇u| = a(x), x ∈ Ω \ {x0}; (1.2)

with boundary conditions

u(x0) = 0, (1.3)

∇u(x) · ν(x) ≥ 0, x ∈ Γ. (1.4)

Here, ν is the unit outer normal to Γ. The condition (1.4) is a consequence of the definition,
(1.1), of the first arrival time, u(x), at a point x ∈ Ω̄ which constrains paths from the source
to the arrival point, x, to lie in Ω̄. Informally observe that the gradient of the first arrival
time for an optimal path is in the tangential direction of the path and on the boundary Γ
the tangent to this path, which is constrained to lie in Ω̄, has a non-negative component
in the outward pointing normal direction.
It can be shown that the above problem has a unique Lipschitz continuous solution u = ua
that satisfies (1.2), (1.3) and (1.4) in the viscosity sense, see Section 2. Let us return to the
abovementioned inverse problem and assume that the measured arrival times are given by
a function uobs : Γ→ R>0. Then, the misfit functional takes the form

J (a) =
1

2

∫
Γ
|ua(x)− uobs(x)|2dox (1.5)

which needs to be minimised over a suitable set K of slowness functions. The functional
(1.5) may be generalised by considering several source points xj0, j = 1, . . . , S with first

arrival times ujobs : Γ→ R>0 resulting in

J (a) =
1

2

S∑
j=1

∫
Γ
|uja(x)− ujobs(x)|2dox. (1.6)

The above approach has been studied numerically in the context of tomography in [11,
17, 18] using finite difference approximations of the eikonal equation and fast sweeping
methods for solving the forward equation and the adjoint equation. The aim of the present
work is to present a corresponding numerical analysis. Let us outline the contents of this
paper and our contributions.
We begin in Section 2 with a brief review of the existence and uniqueness theory for (1.2)–
(1.4) including a description of the viscosity formulation for (1.4), the so–called Soner
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boundary condition. In Section 3 we discretize (1.2)–(1.4) with the help of a monotone
finite difference scheme. We show existence and uniqueness of the discrete solution and
derive an O(h

1
2 ) error bound, which appears to be new for a Hamilton–Jacobi equation

coupled to the Soner boundary condition. The discrete solution is computed with the help
of the fast marching method and we show that the procedure terminates in a finite number
of cycles. In Section 3 we address the problem of approximating the functional (1.5). We
assume that the set K of admissible slowness functions consists of continuous functions that
are finite linear combinations of a given partition of unity. Replacing ua in (1.5) by the
discrete solution gives rise to an approximate minimisation problem, which is shown to have
a solution. We then prove that a subsequence of the discrete minima converges to a solution
of the continuous minimisation problem. In practice, the discrete optimisation problem is
solved by a descent method and the derivative of the discrete functional is calculated with
the help of a discrete adjoint equation. In order to be able to derive this equation we require
differentiability of the discrete state with respect to the slowness function which is ensured
by a suitable choice of the finite difference scheme. We then show that the discrete adjoint
equation has a unique solution. Furthermore, when the solution of the state equation has
been computed by fast marching, the resulting ordering of grid values can be used in order
to efficiently compute the adjoint solution without solving an equation. In Section 4 we
finally present a series of numerical tests in which we consider the more general functional
(1.6) and apply our discretization strategy to varying geometries and numbers of degrees
of freedom for a. Let us finish this introduction by referring to [5, 9], where optimal control
problems for time dependent Hamilton-Jacobi equations were considered.

2 Wellposedness and approximation of the state equation

2.1 Existence and uniqueness

Definition 2.1. A function u ∈ C0(Ω) is called a viscosity subsolution of (1.2) in Ω \ {x0}
if for each ζ ∈ C∞(Ω): if u− ζ has a local maximum at a point x ∈ Ω \ {x0}, then

|∇ζ(x)| ≤ a(x).

A function u ∈ C0(Ω̄) is called a viscosity supersolution of (1.2) in Ω̄ \ {x0} if for each
ζ ∈ C∞(Rn): if u− ζ has a local minimum at a point x ∈ Ω̄ \ {x0}, relative to Ω̄, then

|∇ζ(x)| ≥ a(x).

A viscosity solution of (1.2), (1.3), (1.4) is then a function u ∈ C0(Ω̄) which is a viscosity
subsolution in Ω \ {x0}, a viscosity supersolution in Ω̄ \ {x0} and which satisfies u(x0) = 0.

Note that there is an asymmetry between the definitions of sub- and super-solutions in
the above definition. The fact that u has to be a supersolution on Γ is a viscosity solution
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interpretation of the boundary condition (1.4). This kind of condition, also referred to as
Soner boundary condition, is relevant in optimal control problems with constraints on the
state variable, cf. [16], [7].

In what follows we shall assume the following regularity condition on Ω, cf. [16], [3], p. 278:
there exists a continuous function η : Ω̄→ Rn and ε > 0 such that

Bεs(x+ sη(x)) ⊂ Ω for all x ∈ Ω̄, 0 < s ≤ ε. (2.1)

Theorem 2.2. Suppose that a ∈ C0(Ω̄) is positive. Then there exists a unique viscosity
solution u ∈ C0(Ω̄) of (1.2)–(1.4). The solution is given by the formula

u(x) = inf{
∫ 1

0
a(ξ(r))|ξ′(r)|dr | ξ ∈W 1,∞([0, 1], Ω̄), ξ(0) = x0, ξ(1) = x}.

Furthermore, there exists a constant C = C(Ω) such that u is Lipschitz continuous in Ω
with an upper bound on the Lipschitz constant satisfying

lip(u) ≤ C max
Ω̄

a. (2.2)

Proof. See [16], [7].

2.2 Discretization of the state equation

The numerical solution of the boundary value problem (1.2)–(1.4) in the context of geo-
physical applications was considered in [4, 2, 1]. In particular, in [1] this problem is solved
by time stepping on unstructured triangular grids. We shall use a finite difference method
which is set up in such a way that the solution is differentiable with respect to the slow-
ness function. In order to keep the exposition simple we consider the two–dimensional case
although our arguments can be generalized to higher dimensions.
Let us assume that Ω ⊂ R2 has a boundary Γ which is piecewise C2. For h > 0 consider
the regular grid

Z2
h := {xα = (hα1, hα2) |αi ∈ Z, i = 1, 2}.

We suppose for simplicity that x0 is a grid point, say x0 = xα0 for some α0 ∈ Z2. Next, let
Ωh = Ω∩Z2

h be the set of inner grid points. If for some xα ∈ Ωh there are σ ∈ {−1, 1}, k ∈
{1, 2} with xα+σek /∈ Ω, then there exists s ∈ (0, 1] such that xα + sσhek ∈ Γ and we set
β := α+ sσek as well as xβ := xα + sσhek ∈ Γ. We denote by Γh ⊂ Γ the set of all points
obtained in this way and define Gh := Ωh ∪ Γh. For a point xα ∈ Gh we let

Nα :=

 {xβ ∈ Gh|xβ is a neighbour of xα}, xα ∈ Ωh

{xβ ∈ Ωh |xβ is a neighbour of xα}, xα ∈ Γh.
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Note that for xα ∈ Γh the set Nα only comprises the interior neighbours.
We approximate the solution of (1.2)–(1.4) by a function U : Gh → R as follows:

Uα0 = 0, (2.3)∑
xβ∈Nα

[(Uα − Uβ
hαβ

)+]2
= a(xα)2, xα ∈ Gh \ {xα0}. (2.4)

Here we have abbreviated Uα = U(xα) and hαβ = |xα − xβ|.

Lemma 2.3. Suppose that a ∈ C0(Ω̄) is positive. Then, (2.3), (2.4) has a unique solution
U : Gh → R and

(a) Uα ≥ 0, xα ∈ Gh;

(b) |Uα − Uβ| ≤ C max
Ω̄

a |xα − xβ|, xα, xβ ∈ Gh,

where the constant C is independent of h.

Proof. We start by sketching the proof for the existence of a discrete solution, compare [8]
for similar arguments. Note first that the function Z : Gh → R, Zα := M |xα−xα0 | satisfies
Zα0 = 0 as well as ∑

xβ∈Nα

[(Zα − Zβ
hαβ

)+]2 ≥ a(xα)2, xα ∈ Gh \ {xα0}, (2.5)

provided that M is chosen sufficiently large. We now consider the following iteration: Set
U0 := Z and given Uk : Gh → R≥0 define Uk+1 : Gh → R≥0 by Uk+1

α0
= 0 and

Uk+1
α := inf

{
t ≥ 0 |

∑
xβ∈Nα

[( t− Ukβ
hαβ

)+]2 ≥ a(xα)2
}
, xα ∈ Gh \ {xα0}.

An induction argument based on (2.5) and the monotonicity of the scheme shows that
(Ukα)k∈N is decreasing for all xα ∈ Gh, so that Uα := limk→∞ U

k
α exists for all xα ∈ Gh. It

is not difficult to verify that U is indeed a solution of (2.3), (2.4).

In order to prove uniqueness, let us suppose that U, Ũ : Gh → R are two solutions of (2.3),
(2.4). We set

µ := max
xα∈Gh

(Uα − Ũα)

and suppose that µ > 0. There exists a point xγ ∈ Gh \ {xα0} with Uγ − Ũγ = µ. Let us
introduce W : Gh → R by Wα := Ũα + µ, xα ∈ Gh. Clearly, Wα ≥ Uα, xα ∈ Gh, while
Wγ = Uγ . Hence,

Wγ −Wβ = Uγ −Wβ ≤ Uγ − Uβ, xβ ∈ Nγ . (2.6)
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As a consequence,∑
xβ∈Nγ

[( Ũγ − Ũβ
hγβ

)+]2
=
∑

xβ∈Nγ

[(Wγ −Wβ

hγβ

)+]2 ≤ ∑
xβ∈Nγ

[(Uγ − Uβ
hγβ

)+]2
.

Since U and Ũ are both solutions we deduce from the above relation that

a(xγ)2 =
∑

xβ∈Nγ

[(Uγ − Uβ
hγβ

)+]2
=
∑

xβ∈Nγ

[(Wγ −Wβ

hγβ

)+]2
.

Recalling (2.6) and observing that a(xγ)2 > 0 we infer that there exists xβ ∈ Nγ such that

0 < Wγ −Wβ = Uγ − Uβ,

and therefore
Uβ − Ũβ = µ and Uβ < Uγ . (2.7)

We can now repeat the above argument with γ replaced by β generating a sequence of points
which satisfy (2.7). Since the values of U are strictly decreasing, every point appears only
once, so that necessarily xα0 will eventually be crossed contradicting (2.3). Hence µ ≤ 0, so
that Uα ≤ Ũα, xα ∈ Gh. Exchanging the roles of U and Ũ we infer that Uα = Ũα, xα ∈ Gh.

From the positivity of a and the definition of the scheme it is straightforward to see that
the minimum of U cannot be attained at a point xα 6= xα0 , so that min

xα∈Gh
Uα = Uα0 = 0

proving (a).
In order to show (b) we first note that (2.4) together with the fact that xβ ∈ Nα if and
only if xα ∈ Nβ implies that

|Uα − Uβ| ≤ max
Ω̄

a |xα − xβ| (2.8)

for all grid points xα, xβ ∈ Gh that are neighbours of each other. In order to estimate the

above difference for arbitrary pairs xα, xβ ∈ Gh we first extend U to a function Û : Ω̄→ R
as follows: The grid Z2

h gives rise to a partition of Ω̄ into squares that are possibly truncated
near the boundary. A square Q that lies entirely in Ω̄ is divided into two triangles along
its diagonal and Û is defined by linear interpolation, so that |∇Û|Q| ≤ maxΩ̄ a in view of
(2.8). A truncated square Q at the boundary can also be subdivided into triangles with
possibly one curved edge and again Û is defined via linear interpolation. It can be shown
that this can be done in such a way that |∇Û|Q| ≤ 3 maxΩ̄ a. Thus we obtain a function

Û ∈ W 1,∞(Ω) with |∇Û | ≤ 3 maxΩ̄ a a.e. in Ω. Making use of the continuous embedding
W 1,∞(Ω) ↪→ C0,1(Ω̄) we finally obtain for arbitrary xα, xβ ∈ Gh

|Uα − Uβ| = |Û(xα)− Û(xβ)| ≤ C‖∇Û‖L∞ |xα − xβ| ≤ C max
Ω̄

a |xα − xβ|,

which proves (b).
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2.3 Construction of a solution by the fast marching method

A solution to (2.3), (2.4) can be found efficiently, without iteration, using the fast marching
procedure, see [14], [15]. Recall that the idea behind this method is that the unique solution
Uα of (2.3), (2.4) at a grid point xα only depends on neighbouring values Uβ such that
0 ≤ Uβ < Uα so that the solution can be obtained in increasing order of magnitude of the
grid values Uα. Solving the equation then becomes an issue of sorting the grid values.
In particular the following algorithm is used: First tag xα0 as known and tag as trial all
points that are one grid point away from this known point. Finally tag as far all remaining
points. Now cycle through the following Fast Marching Procedure:

Step 1 Compute a trial value of Ũα for every xα ∈ trial according to (2.4) assuming that
it is smaller than or equal to its trial neighbours.

Step 2 Let xµ be any trial point such that the trial values satisfy Ũµ ≤ Ũα for all xα ∈
trial.

Step 3 Set Uµ = Ũµ for all such xµ and add xµ to known and remove from trial.

Step 4 Tag all neighbours of known as trial if they are not known.

Step 5 If trial = {∅} then STOP.

Step 6 Return to Step 1.

Lemma 2.4. The Fast Marching Procedure terminates in K cycles where K is the number
of distinct positive values taken by the solution U of Lemma 2.3.

Proof. Let us denote by 0 = V0 < V1 < V2 < . . . VK the K + 1 distinct values taken by
U and define Em := {xα ∈ Gh |Uα = Vm}, 0 ≤ m ≤ K. The lemma is proved once we
can show that E0 ∪ . . . ∪ Em coincides with the set of known points after m cycles. This
is certainly true for m = 0. Now suppose that this claim holds for some 0 ≤ m < K,
so that the known points after m cycles are given by E0 ∪ . . . ∪ Em. Let xα ∈ trial and
Nm,α = known∩Nα. We denote by r > minxβ∈Nm,α Uβ the unique solution of the equation∑

xβ∈Nm,α

[(r − Uβ
hαβ

)+]2
= a(xα)2 (2.9)

and suppose that r ≤ maxxβ∈Nm,α Uβ. Then there would be xβ1 , xβ2 ∈ Nm,α with Uβ1 <
r ≤ Uβ2 , say xβ1 ∈ El, xβ2 ∈ Ek, l < k ≤ m. But then the value r will have been computed
as a trial value in the k–th cycle. Since xα has not been added to known we must have
r > Vk = Uβ2 , a contradiction. Hence r > maxxβ∈Nm,α Uβ and in view of (2.4) the smallest
of the trial values satisfying (2.9) is given by Vm+1. As the points xα that take this value
are added to known the induction step is finished.

Remark 2.5. Observe that the unique solution of the equation (2.9) defining the trial
values may be found by solving a quadratic equation and taking the largest root.
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2.4 Error estimate

Theorem 2.6. Suppose that a : Ω̄ → R is Lipschitz continuous and satisfies 0 < Am ≤
a(x) ≤ AM for all x ∈ Ω̄. Let u be the viscosity solution of (1.2)–(1.4) and U the solution
of (2.3), (2.4). Then there exists h0 > 0 such that for all 0 < h ≤ h0

max
xα∈Gh

|u(xα)− Uα| ≤ C
√
h. (2.10)

The constants h0 and C depend on Ω, Am, AM , lip(a) and the function η from (2.1).

Proof. Let ε > 0 be the constant in (2.1). Since η is uniformly continuous on Ω̄, there exists
δ > 0 such that

|η(x)− η(y)| < ε

2
for all x, y ∈ Ω̄ with |x− y| < δ. (2.11)

Denoting by lip(u) the Lipschitz constant of u and by lip(U) the constant appearing in
Lemma 2.3(b) we set

R :=

√
(lip(u))2 +

1

2

(
lip(u)2 + lip(U)2

)
+ max

Ω̄
|η|2. (2.12)

Let us choose L ≥ 1,M ≥ 1 so large that
√

2R√
L
≤ ε

4
,

R√
M
≤ δ

2
. (2.13)

Note that R and hence also L and M only depend on Ω and AM in view of Theorem 2.2
and Lemma 2.3.
We first estimate max

xα∈Gh
(u(xα)− Uα). Choose xγ ∈ Gh such that

max
xα∈Gh

(
(1− ρ

√
h)u(xα)− Uα

)
= (1− ρ

√
h)u(xγ)− Uγ . (2.14)

Here, the constant ρ will be chosen later and we take h0 > 0 so small that

1− ρ
√
h0 ≤ 1 and h0 ≤ ε2. (2.15)

The factor (1−ρ
√
h) in (2.14) is motivated by Ishii’s uniqueness proof for Hamilton–Jacobi

equations of eikonal type, see [10]. We now employ the usual doubling of variables technique
and define Φ : Ω̄×Gh → R by

Φ(x, xα) := (1− ρ
√
h)u(x)− Uα −

L√
h
|x− xα −

√
hη(xγ)|2 −M

√
h|xα − xγ |2.

There exists (xh, xαh) ∈ Ω̄×Gh such that

Φ(xh, xαh) = max
(x,xα)∈Ω̄×Gh

Φ(x, xα).
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Our goal will be to show that for a suitable choice of ρ at least one of the points xh or
xαh has to coincide with the source point x0 and then to use that u(x0) = U(x0) = 0. In
order to exclude the possibility that both xh and xαh are different from x0 we will employ
among other things the fact that u is a viscosity subsolution at xh. However, this is only
possible provided we can ensure that xh does not belong to the boundary of Ω (compare
Definition 2.1). This will be accomplished with the help of the shift

√
hη(xγ) in the third

term of Φ, an idea going back to Soner, [16].
Let us now carry out the proof in detail. In view of (2.1) and (2.15) we have that xγ +√
h η(xγ) ∈ Ω for 0 < h ≤ h0 and hence

Φ(xh, xαh) ≥ Φ(xγ +
√
h η(xγ), xγ),

or equivalently

(1− ρ
√
h)u(xh)− Uαh −

L√
h
|xh − xαh −

√
h η(xγ)|2 −M

√
h|xαh − xγ |

2

≥ (1− ρ
√
h)u(xγ +

√
h η(xγ))− Uγ . (2.16)

Using (2.14) we obtain

L√
h
|xh − xαh −

√
h η(xγ)|2 +M

√
h|xαh − xγ |

2 (2.17)

≤ (1− ρ
√
h)u(xh)− Uαh − (1− ρ

√
h)u(xγ +

√
h η(xγ)) + Uγ

= (1− ρ
√
h)u(xαh)− Uαh −

(
(1− ρ

√
h)u(xγ)− Uγ

)
+(1− ρ

√
h)u(xh)− (1− ρ

√
h)u(xαh) + (1− ρ

√
h)
(
u(xγ)− u(xγ +

√
h η(xγ))

)
≤ lip(u)

(
|xh − xαh |+

√
hmax

Ω̄
|η|
)

≤ lip(u)
(
|xh − xαh −

√
h η(xγ)|+ 2

√
hmax

Ω̄
|η|
)

≤ L

2
√
h
|xh − xαh −

√
h η(xγ)|2 +

√
h
(3

2
(lip(u))2 + max

Ω̄
|η|2
)
.

Recalling (2.12) and (2.13) we obtain that

|xh − xαh −
√
h η(xγ)| ≤

√
2R√
L

√
h ≤ ε

4

√
h <

ε

2

√
h (2.18)

|xαh − xγ | ≤
R√
M
≤ δ

2
< δ. (2.19)

In particular, (2.18), (2.19) and (2.11) imply that

|xh − xαh −
√
h η(xαh)| ≤ |xh − xαh −

√
h η(xγ)|+

√
h|η(xαh)− η(xγ)|

<
ε

2

√
h+

ε

2

√
h = ε

√
h.
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Hence xh ∈ Bε√h(xαh +
√
h η(xαh)) ⊂ Ω for 0 < h ≤ h0 by (2.1). We distinguish two cases:

Case 1: xh ∈ Ω \ {x0} and xαh ∈ Gh \ {x0}. Noting that

x 7→ u(x)− L

(1− ρ
√
h)
√
h
|x− xαh −

√
hη(xγ)|2

has a maximum at x = xh we obtain from the fact that u is a viscosity subsolution that

2L

(1− ρ
√
h)
√
h
|xh − xαh −

√
hη(xγ)| ≤ a(xh). (2.20)

On the other hand, observing that Φ(xh, xαh) ≥ Φ(xh, xα), xα ∈ Gh we obtain

Uα ≥ Uαh +
L√
h
{|xh − xαh −

√
h η(xγ)|2 − |xh − xα −

√
h η(xγ)|2}

+M
√
h{|xαh − xγ |

2 − |xα − xγ |2} =: Vα.

A short calculation shows that for xβ ∈ Nα

Vα − Vβ = − 2L√
h

(
xh − xα −

√
h η(xγ), xβ − xα

)
+ rαβ

where

rαβ =
L√
h
|xβ − xα|2 +M

√
h
(
xβ − xα, xβ + xα − 2xγ

)
.

Hence,

|
Vα − Vβ
hαβ

| ≤ 2L√
h
|
(
xh − xα −

√
h η(xγ),

xβ − xα
hαβ

)
|+ C1

√
h, xβ ∈ Nα (2.21)

where the constant C1 only depends on L,M and Ω.
Next, since Uα ≥ Vα, xα ∈ Gh, Uαh = Vαh we have

Uαh − Uβ ≤ Vαh − Vβ, xβ ∈ Nαh.

We deduce from (2.4) and (2.21)

a(xαh) =
( ∑
xβ∈Nαh

[(Uαh − Uβ
hαhβ

)+]2) 1
2 ≤

( ∑
xβ∈Nαh

[(Vαh − Vβ
hαhβ

)+]2) 1
2

≤ 2L√
h
|xh − xαh −

√
h η(xγ)|+ C2

√
h, (2.22)
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where C2 depends on the same quantities as C1. Combining (2.20) and (2.22) we have

2L√
h
|xh − xαh −

√
hη(xγ)| ≤ (1− ρ

√
h)a(xh)

≤ (a(xh)− a(xαh)) + a(xαh)− ρ
√
h a(xh) (2.23)

≤ lip(a)|xh − xαh |+
2L√
h
|xh − xαh −

√
h η(xγ)|+ C2

√
h− ρAm

√
h.

Furthermore, (2.18) implies that

|xh − xαh | ≤ |xh − xαh −
√
h η(xγ)|+ max

Ω̄
|η|
√
h ≤

( ε
2

+ max
Ω̄
|η|
)√
h,

which together with (2.23) yields

0 ≤
(
C2 − ρAm + lip(a)(

ε

2
+ max

Ω̄
|η|)
)√
h < 0

a contradiction, if we choose for example ρ =
C2+lip(a)( ε

2
+maxΩ̄ |η|)

Am
+ 1. Hence this case

cannot occur and we note that ρ only depends on Ω, Am, AM , η and lip(a).

Case 2: xh = x0 or xαh = x0. We obtain from (2.16) and the fact that Uα ≥ 0, u(x0) = 0

(1− ρ
√
h)u(xγ +

√
h η(xγ))− Uγ ≤ (1− ρ

√
h)u(xh)− Uαh

≤ u(xh) ≤ min(u(xh), u(xαh)) + lip(u)|xh − xαh |
≤ lip(u)|xh − xαh −

√
h η(xγ)|+

√
h lip(u) max

Ω̄
|η|

≤ lip(u)
( ε

2
+ max

Ω̄
|η|
)√
h

by (2.18). As a consequence, recalling the definition of xγ

max
xα∈Gh

(u(xα)− Uα) ≤ (1− ρ
√
h)u(xγ)− Uγ + ρ

√
hmax

Ω̄
u

≤ (1− ρ
√
h)u(xγ +

√
h η(xγ))− Uγ + lip(u) max

Ω̄
|η|
√
h+ ρ

√
hmax

Ω̄
u

≤ C3

√
h, (2.24)

where C3 depends on the same quantities as ρ. Note that the bound on maxΩ̄ u follows
from

u(x) = u(x)− u(x0) ≤ lip(u)|x− x0| ≤ CAMdiam(Ω) (2.25)

in view of (1.3) and Theorem 2.2.

It remains to derive an upper bound on max
xα∈Gh

(Uα − u(xα)). This will be done in a similar

way as above and we will only sketch the argument. To begin, let xγ ∈ Gh be such that

max
xα∈Gh

(
(1− ρ

√
h)Uα − u(xα)

)
= (1− ρ

√
h)Uγ − u(xγ)

11



and define Φ : Ω̄×Gh → R by

Φ(x, xα) := (1− ρ
√
h)Uα − u(x)− L√

h
|xα − x−

√
hη(xγ)|2 −M

√
h|x− xγ |2.

There exists (xh, xαh) ∈ Ω̄×Gh such that Φ(xh, xαh) = max
Ω̄×Gh

Φ. Since xγ +
√
h η(xγ) ∈ Ω

for 0 < h ≤ h0 there exists xγ̃ ∈ Gh with

|xγ̃ − xγ −
√
h η(xγ)| ≤ h. (2.26)

The inequality Φ(xh, xαh) ≥ Φ(xγ , xγ̃) together with (2.26) implies

(1− ρ
√
h)Uαh − u(xh)− L√

h
|xαh − xh −

√
h η(xγ)|2 −M

√
h|xh − xγ |2

≥ (1− ρ
√
h)Uγ̃ − u(xγ)− Lh

3
2 . (2.27)

We can argue as in (2.17) to show that

L√
h
|xαh − xh −

√
h η(xγ)|2 +M

√
h|xh − xγ |2

≤ L

2
√
h
|xαh − xh −

√
h η(xγ)|2 +

√
h
(
(lip(u))2 +

1

2
lip(U)2 + max

Ω̄
|η|2
)

+ Lh
3
2 ,

from which we conclude recalling (2.12)

|xαh − xh −
√
h η(xγ)| ≤ ε

4

√
h+
√

2h <
ε

2

√
h,

|xh − xγ | ≤
R√
M

+
L√
M
h ≤ δ

2
+

L√
M
h < δ

for 0 < h ≤ h0, where h0 is chosen smaller if necessary. Just as above we deduce that
xαh ∈ Bε√h(xh +

√
h η(xh)) ⊂ Ω for 0 < h ≤ h1 and then rule out that xh ∈ Ω̄ \ {x0} and

xαh ∈ Ωh \ {x0} by choosing ρ sufficiently large. It remains to consider the case xh = x0 or
xαh = x0. Combining (2.27) with the fact that x0 = xα0 and Lemma 2.3(b) we have

(1− ρ
√
h)Uγ̃ − u(xγ) ≤ (1− ρ

√
h)Uαh − u(xh) + Lh

3
2 ≤ Uαh + Lh

3
2

≤ min(Uαh , Uα0) + CAM |xh − xαh |+ Lh
3
2

≤ CAM |xαh − xh −
√
h η(xγ)|+ CAM max

Ω̄
|η|
√
h+ Lh

3
2

≤ C4

√
h.

Hence, we finally have similarly as above

max
xα∈Gh

(Uα − u(xα)) ≤ C5

√
h, (2.28)

where C5 again only depends on Ω, Am, AM , η and lip(a). The inequalities (2.24) and
(2.28) imply the result.

12



3 The optimal control problem

3.1 The continuous problem

Let 0 < Am < AM < ∞ and the positive function uobs ∈ C0,1(Γ) be given. We introduce
the set

K := {a : Ω̄→ R | a(x) =
L∑
i=1

aiφi(x), Am ≤ ai ≤ AM , 1 ≤ i ≤ L}

where {φi}Li=1 satisfy φi ∈ W 1,∞(D), φi(x) ≥ 0, i = 1, . . . , L and
∑L

i=1 φi(x) = 1, x ∈ Ω,

Ω̄ ⊂ D =
L⋃
i=1

supp(φi).

Given a ∈ K we denote by u = ua the solution of (1.2)–(1.4) given by Theorem 2.2 and
consider the following optimal control problem

(P) min
a∈K
J (a) =

1

2

∫
Γ
|ua(x)− uobs(x)|2dox.

3.2 The discrete control problem

The aim of this section is to set up and analyze a discrete approximation of (P). We start by
defining a suitable approximation of the integral

∫
Γ |ua(x)− uobs(x)|2dox. To this purpose

we choose an embedding γ : [0, 1] → R2, which is piecewise C2 such that γ([0, 1]) = Γ,
γ(0) = γ(1) and |γ′(t)| ≥ c0 > 0, with the exception of finitely many t ∈ [0, 1]. For every
xα ∈ Γh there exists a unique tα ∈ [0, 1] with γ(tα) = xα. Ordering the different preimages
in the form 0 ≤ tα1 < tα2 < . . . < tαN < 1 induces an ordering of the boundary grid points
xαi = γ(tαi), i = 1, . . . , N . For each xα = xαi ∈ Γh we let

hα :=
1

2

(
|xαi+1 − xαi |+ |xαi − xαi−1 |

)
(3.1)

with the convention tαN+1 = tα1 , tα0 = tαN . Furthermore, choosing a sequence (δh)h>0 with
δh ≥ 0 and limh→0 δh = 0 we approximate the functional J by

Jh(a) =
1

2

∑
xα∈Γh

hα|Ua(xα)− uobs(xα)|2 +
δh
2

∫
Ω
|∇a|2,

where Ua is the solution of (2.3), (2.4). Let us first establish the consistency of the above
approximation.

Lemma 3.1. Let a =
∑L

i=1 aiφi ∈ K. Then

Jh(a)→ J (a), as h→ 0,

where the convergence is uniform in a ∈ K.
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Proof. The assertion is a consequence of the following estimate which we will need again
later on:

|1
2

∑
xα∈Γh

hα|Ua(xα)− uobs(xα)|2 − 1

2

∫
Γ
|ua(x)− uobs(x)|2dox| ≤ C

√
h, (3.2)

where the constant C is independent of a ∈ K. In order to prove (3.2) we write

1

2

∑
xα∈Γh

hα|Ua(xα)− uobs(xα)|2 − 1

2

∫
Γ
|ua(x)− uobs(x)|2dox

=
1

2

N∑
i=1

hαi
{
|Ua(xαi)− uobs(xαi)|2 − |ua(xαi)− uobs(xαi)|2

}
+

1

2

{ N∑
i=1

hαi |ua(xαi)− uobs(xαi)|2 −
∫

Γ
|ua(x)− uobs(x)|2dox

}
≡ I + II.

Recalling Theorem 2.6 we have

|I| ≤ |Γ| max
xα∈Gh

|ua(xα)− Ua(xα)|
(
max

Ω̄
ua + max

Gh
Ua + 2 max

Γ
uobs

)
≤ C
√
h,

where the constant C is independent of a ∈ K since lip(a) ≤ LAM maxi=1,...,L ‖∇φi‖L∞(Ω)

for all a ∈ K. Note also that maxΩ̄ ua and maxGh Ua can be bounded independently of a
using the estimate (2.25) and a corresponding bound for Ua.
Next, we have for fa(x) := 1

2 |ua(x)− uobs(x)|2

II =
N∑
i=1

fa(xαi)
1

2

(
|γ(tαi+1)− γ(tαi)|+ |γ(tαi)− γ(tαi−1)|

)
−
∫ 1

0
fa(γ(t))|γ′(t)|dt

=
N∑
i=1

∫ tαi+1

tαi

{1

2

(
fa(γ(tαi)) + fa(γ(tαi+1))

)
− fa(γ(t))

}
|γ′(t)|dt

+

N∑
i=1

1

2

(
fa(γ(tαi)) + fa(γ(tαi+1))

){
|γ(tαi+1)− γ(tαi)| −

∫ tαi+1

tαi

|γ′(t)|dt
}
≡ II1 + II2.

Observing that ua and hence fa is Lipschitz on Γ with a constant that is independent of
a ∈ K we infer that |II1| ≤ Ch. Furthermore, since γ is piecewise C2 we also have

|
∫ tαi+1

tαi

|γ′(t)|dt− |γ(tαi+1)− γ(tαi)|| ≤ Ch(tαi+1 − tαi),

which implies that |II2| ≤ Ch. This proves (3.2) and the result follows from the fact that
limh→0 δh = 0.
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We now consider the following discrete control problem:

(Ph) min
a∈K
Jh(a).

Theorem 3.2. The problem (Ph) has at least one solution a∗h ∈ K. There exists a sequence
h → 0 such that a∗h → a∗ for some a∗ ∈ K and a∗ is a solution of (P). Furthermore, if

δh > 0 for all h > 0 and limh→0

√
h
δh

= 0, then∫
Ω
|∇a∗|2 ≤

∫
Ω
|∇ã|2 for every solution ã of (P). (3.3)

Proof. It is not difficult to see that the mapping a 7→ Ua is continuous and hence there exists
a minimizer a∗h ∈ K of (Ph). Furthermore, observing that Am ≤ a∗h,i ≤ AM , i = 1, . . . , L,

there exists a sequence h → 0 and a∗ ∈ K such that a∗h → a∗ uniformly in Ω̄. Let us
abbreviate uh = ua∗h , u = ua∗ . Standard stability arguments from the theory of viscosity

solutions show that uh → u uniformly in Ω̄ after possibly extracting a further subsequence.
As a consequence,

lim
h→0
J (a∗h) = J (a∗). (3.4)

Now, if a ∈ K is arbitrary we rewrite the relation Jh(a∗h) ≤ Jh(a) as

J (a∗h) ≤ Jh(a) +
(
J (a∗h)− Jh(a∗h)

)
.

Using (3.4) and Lemma 3.1 we deduce that a∗ solves (P) by passing to the limit h → 0.

Finally, suppose that δh > 0, h > 0 with limh→0

√
h
δh

= 0 and that ã ∈ K is an arbitrary
solution of (P). Rewriting the relation Jh(a∗h) ≤ Jh(ã) we obtain∫

Ω
|∇a∗h|2 ≤

∫
Ω
|∇ã|2 +

1

δh

( ∑
xα∈Γh

hα|Uã(xα)− uobs(xα)|2 −
∑
xα∈Γh

hα|Ua∗h(xα)− uobs(xα)|2
)

≤
∫

Ω
|∇ã|2 +

1

δh

( ∑
xα∈Γh

hα|Uã(xα)− uobs(xα)|2 −
∫

Γ
|uã(x)− uobs(x)|2dox

)
+

1

δh

(∫
Γ
|ua∗h(x)− uobs(x)|2dox −

∑
xα∈Γh

hα|Ua∗h(xα)− uobs(xα)|2
)
,

since J (ã) ≤ J (a∗h). Recalling (3.2) we deduce that∫
Ω
|∇a∗h|2 ≤

∫
Ω
|∇ã|2 + C

√
h

δh

so that (3.3) follows upon sending h→ 0.
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3.3 The discrete adjoint equation

Let U : Gh → R be the solution of (2.3), (2.4). We introduce the following adjoint problem:
Find P : Gh \ {xα0} → R such that∑

xβ∈Nα

{(Uα − Uβ
hαβ

)+ Pα
hαβ
−
(Uβ − Uα

hαβ

)+ Pβ
hαβ

}
= 0, xα ∈ Ωh \ {xα0}; (3.5)

∑
xβ∈Nα

{(Uα − Uβ
hαβ

)+ Pα
hαβ
−
(Uβ − Uα

hαβ

)+ Pβ
hαβ

}
=

hα
h2

(
uobs(xα)− Uα

)
, xα ∈ Γh, (3.6)

where hα is given by (3.1). Note that the fact that P is not defined at xα0 does not cause a

problem in evaluating (3.5). If xα0 ∈ Nα for some xα ∈ Ωh then
(Uα0−Uα

hαβ

)+
=
(−Uα
hαβ

)+
= 0.

Lemma 3.3. For a given function Q : Gh \ {xα0} → R there exists a unique V : Gh → R
with Vα0 = 0 and ∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Vα − Vβ
hαβ

= Qα, xα ∈ Gh \ {xα0}.

Proof. It is sufficient to check that the linear problem: Vα0 = 0 and∑
xβ∈Nα

(Uα − Uβ
hαβ

)+ Vα − Vβ
hαβ

= 0, xα ∈ Gh \ {xα0}

only has the trivial solution. Let us enumerate the grid points in such a way that 0 = Uα0 <
Uα1 ≤ Uα2 ≤ . . . ≤ UαM where M + 1 = |Gh|. Assume that Vα0 = Vα1 = . . . = Vαr−1 = 0
already holds for some r ∈ {1, . . . ,M}. Then

0 =
∑

xβ∈Nαr

(Uαr − Uβ
hαrβ

)+ Vαr − Vβ
hαrβ

= Vαr
∑

xβ∈Nαr

(Uαr − Uβ
hαrβ

)+ 1

hαrβ

since Vβ = 0 if Uβ < Uαr . Recalling (2.4) and the fact that a(xαr) > 0 we infer that
Vαr = 0. By induction we then deduce that V ≡ 0.

Lemma 3.4. Problem (3.5)–(3.6) has a unique solution P : Gh \ {xα0} → R.

Proof. Since the problem is linear it is sufficient to check that the corresponding homo-
geneous problem only has the trivial solution. Hence suppose that Q : Gh \ {xα0} → R
satisfies ∑

xβ∈Nα

{(Uα − Uβ
hαβ

)+ Qα
hαβ
−
(Uβ − Uα

hαβ

)+ Qβ
hαβ

}
= 0, xα ∈ Gh \ {xα0}.
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Let us denote by V : Gh → R the function defined in Lemma 3.3. Rearranging the sum-
mation in the second term we obtain

0 =
∑

xα∈Gh

Vα
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Qα
hαβ
−
∑

xα∈Gh

Vα
∑

xβ∈Nα

(Uβ − Uα
hαβ

)+ Qβ
hαβ

=
∑

xα∈Gh

Vα
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Qα
hαβ
−
∑

xα∈Gh

Qα
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Vβ
hαβ

=
∑

xα∈Gh

Qα
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Vα − Vβ
hαβ

=
∑

xα∈Gh\{xα0}

Q2
α.

Here we again used the fact that
(
Uα0 − Uβ

)+
= 0, xβ ∈ Gh. Hence Qα = 0 for all

xα ∈ Gh \ {xα0} and the proof is complete.

3.4 Fast solution of the discrete adjoint equation

For the efficient calculation of P the following observation is useful. Abbreviating for a
point xα ∈ Gh \ {xα0}

dα :=
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ 1

hαβ
> 0

we can write (3.5), (3.6) as follows:

Pα =


1

dα

∑
xβ∈Nα

(Uβ − Uα
hαβ

)+ Pβ
hαβ

, xα ∈ Ωh \ {xα0};

1

dα

( ∑
xβ∈Nα

(Uβ − Uα
hαβ

)+ Pβ
hαβ

+
hα
h2

(
uobs(xα)− Uα

))
, xα ∈ Γh.

(3.7)

If Pβ is known for any xβ ∈ Nα with Uβ ≥ Uα then the right hand side of (3.7) is known. As
a consequence, we can successively calculate the values of Pα, xα ∈ Gh \ {xα0} by ordering
the grid points with respect to the size of Uα, xα ∈ Gh. Note that such an ordering is
available as a byproduct of the fast marching method.

3.5 Computation of the derivative

Let us begin by establishing the differentiability of the state with respect to the control
variable.
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Lemma 3.5. Let a =
∑L

i=1 aiφi ∈ K with corresponding solution U = Ua of (2.3), (2.4).

Then
∂

∂am

[
Ua(xα)

]
exists for xα ∈ Gh, 1 ≤ m ≤ L and Z(m) : Gh → R with Z(m)

α =

∂

∂am

[
Ua(xα)

]
satisfies Z

(m)
α0 = 0 as well as

∑
xβ∈Nα

(Uα − Uβ
hαβ

)+ Z
(m)
α − Z(m)

β

hαβ
= a(xα)φm(xα), xα ∈ Gh \ {xα0}.

Proof. Let us view (2.3), (2.4) as a system of the form F (U, a) = 0. In order to establish
the differentiability of a 7→ Ua via the implicit function theorem we need to check that the
problem: Vα0 = 0 and∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Vα − Vβ
hαβ

= 0, xα ∈ Gh \ {xα0}

only has the trivial solution V ≡ 0. This however is an immediate consequence of Lemma
3.3. The formula for Z(m) then follows by differentiating (2.4) with respect to am and
recalling the structure of a.

Let a =
∑L

i=1 aiφi ∈ K with corresponding solution U = Ua of (2.3), (2.4). Our aim

is to derive a formula for
∂Jh
∂am

(a),m = 1, . . . , L, which will be used for the numerical

computation within a descent method. Rather than use Z(m) which would involve solving
an equation for each am we use the adjoint equation as is standard in PDE constrained
optimization.

Theorem 3.6. Let a =

L∑
i=1

aiφi ∈ K and m ∈ {1, . . . , L}. Then,

∂Jh
∂am

(a) = −h2
∑

xα∈Gh\{xα0}

Pα a(xα)φm(xα) + δh

L∑
l=1

smlal,

where P : Gh \ {xα0} → R is the solution of (3.5), (3.6) and skl =
∫

Ω∇φk ·∇φldx, k, l =
1, . . . , L.
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Proof. We deduce from the definition of Z(m), (3.5), (3.6) that

∂Jh
∂am

(a) =
∑
xα∈Γh

hα
(
Uα − uobs(xα)

)
Z(m)
α + δh

L∑
l=1

smlal

= −h2
∑
xα∈Γh

Z(m)
α

∑
xβ∈Nα

{(Uα − Uβ
hαβ

)+ Pα
hαβ
−
(Uβ − Uα

hαβ

)+ Pβ
hαβ

}
+ δh

L∑
l=1

smlal

= −h2
∑

xα∈Gh\{xα0}

Z(m)
α

∑
xβ∈Nα

{(Uα − Uβ
hαβ

)+ Pα
hαβ
−
(Uβ − Uα

hαβ

)+ Pβ
hαβ

}
+ δh

L∑
l=1

smlal.

Rearranging the summation and applying Lemma 3.5 then yields

∂Jh
∂am

(a) = −h2
∑

xα∈Gh\{xα0}

Pα
∑

xβ∈Nα

(Uα − Uβ
hαβ

)+ Z
(m)
α − Z(m)

β

hαβ
+ δh

L∑
l=1

smlal

= −h2
∑

xα∈Gh\{xα0}

Pαa(xα)φm(xα) + δh

L∑
l=1

smlal

and the proof is complete.

4 Numerical Results

Our numerical tests are carried out for an optimal control problem with multiple source
points xj0, j = 1, . . . , S and corresponding observed data ujobs. We approximate the func-
tional (1.6) by the discrete functional

Jh(a) =
1

2

S∑
j=1

N∑
i=1

hαi |U ja(xαi)− u
j
obs(xαi)|

2 +
δh
2

∫
Ω
|∇a|2

for which the partial derivatives can be computed with the help of Theorem 3.6, so that

∂Jh
∂am

(a) = −h2
S∑
j=1

∑
xα∈Gh\{xj0}

P jα a(xα)φm(xα) + δh

L∑
l=1

smlal, m = 1, . . . , L.

Here, U ja and P j are the solutions of (2.3), (2.4) and (3.5), (3.6) with xα0 = xj0 respectively.
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4.1 Optimization algorithm

To solve the problem we use the projected gradient algorithm, which, for simplicity of
notation, we present for the case of a single source point:

Step 1 Choose a0 ∈ [Am, AM ]L, γ ∈ (0, 1) and tol.

Step 2 For k = 0, 1, 2, . . ., do Steps 3–6.

Step 3 Set sk = −∇Jh(ak) = −
(
∂Jh
∂a1

(ak), · · · , ∂Jh
∂aL

(ak)

)
.

Step 4 Choose the maximum σk ∈ {1, 1
2 ,

1
4 , . . .} for which

Jh(PS(ak + σksk))− Jh(ak) ≤ − γ

σk
‖PS(ak + σksk)− ak‖22.

Step 5 Set ak+1 = PS(ak + σks
k).

Step 6 If ‖ak+1 − ak‖2 < tol then STOP.

Here, PS(a)i = max(Am,min(ai, AM )) and ‖ · ‖2 denotes the euclidian norm in RL.
In the computations carried out below we found it adequate to take γ = 0.01.

4.2 Numerical experiments

For the numerical experiments we consider:

• Three domains; a square domain Ωs, a circular domain Ωc ⊂ Ωs and a quatrefoil
domain Ωq ⊂ Ωs, see Figure 1. For the curved domains Ωc and Ωq we used numerical
integration to approximate skl, k, l = 1, . . . , L.

• The set K is chosen in the following way. We choose the φi, i = 1, . . . , L to be
the basis functions associated with vertices of triangles belonging to a uniform right
angled isosceles triangulation of Ωs formed on a square grid of size (J + 1)× (J + 1),
with triangles of diameter ha. We set Am = 0.1 and AM = 5.

The observed data are generated as the exact arrival times on the boundary arising from
given slowness functions. We use the three values of the slowness function a = 1/c consid-
ered in [11]:

c(x) ≡ 1; (4.8)

c(x) = 3− 2.5 exp(−0.5x2
1); (4.9)

c(x) = 3− 0.5 exp(−4(x2
1 + (x2 − 0.5)2))− exp(−4(x2

1 + (x2 − 1.25)2)). (4.10)
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Figure 1: The distribution of 12 source points in Ωs
h (left hand plot), Ωc

h (centre plot) and
Ωq
h (right hand plot)

In Figures 2–4 we show several examples of the recovered and exact slowness functions.
They were obtained with h = 0.02. In Figure 2 we take Ω = Ωs, L = 121, J = 10, δh = h
and S = 12 (see Figure 1 for the distribution of the source points). The upper plots show
a(x) given by: (4.8) left hand plot, (4.9) centre plot, (4.10) right hand plot, and the three
lower plots show the corresponding approximate solutions ah(x). Figures 3 and 4 take the
same form as Figure 2 but with Ω = Ωc, L = 65 and J = 10 and Ω = Ωq, L = 75 and
J = 10 respectively.

S a(x) given by (4.8) a(x) given by (4.9) a(x) given by (4.10)

1 7.64 · 10−5 (3.45 · 10−2) 3.90 · 10−2 (5.46 · 10−1) 3.16 · 10−4 (5.65 · 10−2)

5 4.26 · 10−6 (2.17 · 10−3) 6.52 · 10−2 (1.87 · 10−1) 8.26 · 10−4 (1.94 · 10−2)

9 2.19 · 10−6 (1.43 · 10−3) 6.79 · 10−2 (1.61 · 10−1) 8.68 · 10−4 (1.67 · 10−2)

12 2.22 · 10−6 (1.30 · 10−3) 7.83 · 10−2 (4.80 · 10−2) 1.00 · 10−3 (5.61 · 10−3)

Table 1: Jh(ah) (‖a− ah‖0) for Ωs
h, L = 121, δh = h

In order to get some idea of how the parameters in the model affect the solution we include
Tables 1–6. In these tables the values of Jh(ah) = minK Jh and ‖a − ah‖0 are displayed.
Unless otherwise specified the data in Tables 1–6 were obtained by setting Ω = Ωs, L = 121,
δh = h and S = 12.

• In Tables 1-3 for each of the slowness functions defined above we consider four values
for the number of source points S.

• In Table 4 we consider three values of L.

• In Table 5 we consider three values of δh.
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Figure 2: a(x) (upper plots), ah(x) with L = 121, δh = h and S = 12 (lower plots)

Figure 3: a(x) (upper plots), ah(x) with L = 121, δh = h and S = 12 (lower plots)
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Figure 4: a(x) (upper plots), ah(x) with L = 121, δh = h and S = 12 (lower plots)

S a(x) given by (4.8) a(x) given by (4.9) a(x) given by (4.10)

1 3.33 · 10−5 (1.20 · 10−2) 1.80 · 10−2 (2.25 · 10−1) 2.32 · 10−4 (4.08 · 10−2)

5 1.12 · 10−4 (7.16 · 10−3) 4.10 · 10−2 (3.15 · 10−2) 8.63 · 10−4 (5.16 · 10−3)

9 3.21 · 10−5 (9.40 · 10−3) 4.59 · 10−2 (2.66 · 10−2) 9.99 · 10−4 (4.00 · 10−3)

12 3.40 · 10−5 (8.40 · 10−3) 4.70 · 10−2 (2.68 · 10−2) 1.01 · 10−3 (4.15 · 10−3)

Table 2: Jh(ah) (‖a− ah‖0) for Ωc
h, L = 121, δh = h

• In Table 6 we add noise into the system; in particular for each of the desired speed
functions, (4.8)–(4.10), we solve (2.4) to obtain û(xα) and then we set

uobs(xα) = û(xα) + Λn(xα), xα ∈ Gh (4.11)

where n(xα) ∈ [−1, 1] is random noise and Λ ∈ R.

We conclude our numerical results with Tables 7 and 8 which show how ‖ahf − ah‖0 and
Jh(ah) = minK Jh vary with h. Here we fix the convex set K by setting L = 121. The
observed boundary data are fixed by generating them using the exact (actually computed
on a fine grid) solution of the eikonal equation with the interpolations in K of the slowness
functions (4.9) and (4.10). Here ahf is the approximate solution to the optimization problem
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S a(x) given by (4.8) a(x) given by (4.9) a(x) given by (4.10)

1 1.25 · 10−2 (1.51 · 10−1) 4.23 · 10−2 (2.91 · 10−1) 1.91 · 10−3 (5.40 · 10−2)

5 4.54 · 10−3 (3.26 · 10−2) 7.49 · 10−2 (9.83 · 10−2) 2.13 · 10−3 (1.57 · 10−2)

9 8.83 · 10−3 (4.15 · 10−2) 8.34 · 10−2 (8.16 · 10−2) 2.62 · 10−3 (1.51 · 10−2)

12 8.23 · 10−3 (3.55 · 10−2) 8.32 · 10−2 (6.75 · 10−2) 2.72 · 10−3 (1.44 · 10−2)

Table 3: Jh(ah) (‖a− ah‖0) for Ωq
h, L = 121, δh = h

L a(x) given by (4.8) a(x) given by (4.9) a(x) given by (4.10)

36 7.17 · 10−6 (2.08 · 10−3) 8.84 · 10−2 (8.73 · 10−2) 1.47 · 10−3 (1.48 · 10−2)

121 2.22 · 10−6 (1.30 · 10−3) 7.83 · 10−2 (4.80 · 10−2) 1.00 · 10−3 (5.61 · 10−3)

441 1.71 · 10−5 (4.12 · 10−3) 7.64 · 10−2 (4.33 · 10−2) 9.48 · 10−4 (6.20 · 10−3)

Table 4: Jh(ah) (‖a− ah‖0) for Ωs
h, δh = h and S = 12

computed on a fine grid with h = 0.005 and ah is the approximate solution computed using
h = 0.05, 0.04, 0.03̇, 0.025, 0.02, 0.016̇. From these tables we see that for the two desired
speed functions, (4.9) and (4.10), the values of ‖ahf − ah‖0 and Jh(ah) = minK Jh reduce
linearly with h.
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