1,631 research outputs found

    Fe nano-particle coatings for high temperature wear resistance

    No full text
    Oxidational wear continues to present an economic challenge for the replacement of components subject to high temperature fretting and sliding contacts in applications such as gas turbine engines. At elevated temperatures, low friction oxide ‘glaze’ layers can form and act as an interface between the contact and the substrate material. Whilst desirable, the glaze is formed from wear debris and often consumes the underlying substrate material. In order to induce rapid formation of low friction oxide layers without a severe ‘running-in’ period, nano particles of Fe in the range 5-10nm were deposited on ground flat ended pin and plate 080M40 substrates using a terminated gas condensation PVD process, to a thickness of 600nm. Coatings were tested in a reciprocating geometry at a fixed stroke length of 0.4mm, frequency of 31Hz and 40N normal load (1MPa contact stress) and at ambient, 300°C and 540°C. At ambient temperature the coated surfaces exhibited higher friction but lower wear compared to the uncoated substrates, whereas at elevated temperatures, the coated surfaces exhibited slightly lower steady state dynamic friction coefficients, and minimal changes in wear depth after a short incubation period. SEM of the worn surfaces indicated that hard oxide plateaus were responsible for the load bearing contact area at elevated temperatures. Cross sectional FIB, TEM and SIMS confirmed that at elevated temperatures, the nano-particle coating induced rapid formation of a nano-crystalline porous surface oxide film of mixed composition which protected the substrate from severe wear during the running-in period

    The 1985 Chile earthquake: Structural characteristics and damage statistics for the building inventory in Vina del Mar

    Get PDF
    The Chile earthquake of 3 March 1985 resulted in an effective peak acceleration of 0.36g in the coastal city of Vina del Mar. The city had an inventory of over 400 reinforced concrete buildings ranging in height from 5 to 23 stories. The observed behavior of the buildings is interpreted in relation to the physical characteristics of the structural systems.National Science Foundation Grant ECE 86-0378

    Collapse of composite tubes under end moments

    Get PDF
    Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic

    Moduli-Space Dynamics of Noncommutative Abelian Sigma-Model Solitons

    Get PDF
    In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space C^k/S_k features a natural K"ahler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.Comment: 1+15 pages, 2 figures; v2: reference added, to appear in JHE

    Chern-Simons Solitons, Chiral Model, and (affine) Toda Model on Noncommutative Space

    Full text link
    We consider the Dunne-Jackiw-Pi-Trugenberger model of a U(N) Chern-Simons gauge theory coupled to a nonrelativistic complex adjoint matter on noncommutative space. Soliton configurations of this model are related the solutions of the chiral model on noncommutative plane. A generalized Uhlenbeck's uniton method for the chiral model on noncommutative space provides explicit Chern-Simons solitons. Fundamental solitons in the U(1) gauge theory are shaped as rings of charge `n' and spin `n' where the Chern-Simons level `n' should be an integer upon quantization. Toda and Liouville models are generalized to noncommutative plane and the solutions are provided by the uniton method. We also define affine Toda and sine-Gordon models on noncommutative plane. Finally the first order moduli space dynamics of Chern-Simons solitons is shown to be trivial.Comment: latex, JHEP style, 23 pages, no figur

    Early medieval place-names and riverine flood histories: a new approach and new chronostratigraphic records for three English rivers

    Get PDF
    Environmental information from place-names has largely been overlooked by geoarchaeologists and fluvial geomorphologists in analyses of the depositional histories of rivers and floodplains. Here, new flood chronologies for the rivers Teme, Severn, and Wye are presented, modelled from stable river sections excavated at Broadwas, Buildwas, and Rotherwas. These are connected by the Old English term *wæsse, interpreted as ‘land by a meandering river which floods and drains quickly’. The results reveal that, in all three places, flooding during the early medieval period occurred more frequently between AD 350–700 than between AD 700–1100, but that over time each river's flooding regime became more complex including high magnitude single events. In the sampled locations, the fluvial dynamics of localized flood events had much in common, and almost certainly differed in nature from other sections of their rivers, refining our understanding of the precise nature of flooding which their names sought to communicate. This study shows how the toponymic record can be helpful in the long-term reconstruction of historic river activity and for our understanding of past human perceptions of riverine environments

    Mechanistic insights into the C<sub>55</sub>-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures

    Get PDF
    The continued rise of antibiotic resistance is a global concern that threatens to undermine many aspects of modern medical practice. Key to addressing this threat is the discovery and development of new antibiotics that operate by unexploited modes of action. The so-called calcium-dependent lipopeptide antibiotics (CDAs) are an important emerging class of natural products that provides a source of new antibiotic agents rich in structural and mechanistic diversity. Notable in this regard is the subset of CDAs comprising the laspartomycins and amphomycins/friulimicins that specifically target the bacterial cell wall precursor undecaprenyl phosphate (C(55)-P). In this study we describe the design and synthesis of new C(55)-P-targeting CDAs with structural features drawn from both the laspartomycin and amphomycin/friulimicin classes. Assessment of these lipopeptides revealed previously unknown and surprisingly subtle structural features that are required for antibacterial activity. High-resolution crystal structures further indicate that the amphomycin/friulimicin-like lipopeptides adopt a unique crystal packing that governs their interaction with C(55)-P and provides an explanation for their antibacterial effect. In addition, live-cell microscopy studies provide further insights into the biological activity of the C(55)-P targeting CDAs highlighting their unique mechanism of action relative to the clinically used CDA daptomycin
    • …
    corecore