Abstract

We consider the Dunne-Jackiw-Pi-Trugenberger model of a U(N) Chern-Simons gauge theory coupled to a nonrelativistic complex adjoint matter on noncommutative space. Soliton configurations of this model are related the solutions of the chiral model on noncommutative plane. A generalized Uhlenbeck's uniton method for the chiral model on noncommutative space provides explicit Chern-Simons solitons. Fundamental solitons in the U(1) gauge theory are shaped as rings of charge `n' and spin `n' where the Chern-Simons level `n' should be an integer upon quantization. Toda and Liouville models are generalized to noncommutative plane and the solutions are provided by the uniton method. We also define affine Toda and sine-Gordon models on noncommutative plane. Finally the first order moduli space dynamics of Chern-Simons solitons is shown to be trivial.Comment: latex, JHEP style, 23 pages, no figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019