1,642 research outputs found
Recommended from our members
Parton distributions with high energy proton beams
The opportunities for using high energy proton beams to advance our current knowledge in parton distributions are discussed. Highlights from some Fermilab dimuon production experiments with 800 GeV proton beams are presented. Possible future directions are discussed
Quark energy loss and shadowing in nuclear Drell-Yan process
The energy loss effect in nuclear matter is another nuclear effect apart from
the nuclear effects on the parton distribution as in deep inelastic scattering
process. The quark energy loss can be measured best by the nuclear dependence
of the high energy nuclear Drell-Yan process. By means of three kinds of quark
energy loss parameterizations given in literature and the nuclear parton
distribution extracted only with lepton-nucleus deep inelastic scattering
experimental data, measured Drell-Yan production cross sections are analyzed
for 800GeV proton incident on a variety of nuclear targets from FNAL E866. It
is shown that our results with considering the energy loss effect are much
different from these of the FNAL E866 who analysis the experimental data with
the nuclear parton distribution functions obtained by using the deep inelastic
lA collisions and pA nuclear Drell-Yan data . Considering the existence of
energy loss effect in Drell-Yan lepton pairs production,we suggest that the
extraction of nuclear parton distribution functions should not include
Drell-Yan experimental data.Comment: 12 page
Restoration of factorization for low hadron hadroproduction
We discuss the applicability of the factorization theorem to low-
hadron production in hadron-hadron collision in a simple toy model, which
involves only scalar particles and gluons. It has been shown that the
factorization for high- hadron hadroproduction is broken by soft gluons in
the Glauber region, which are exchanged among a transverse-momentum-dependent
(TMD) parton density and other subprocesses of the collision. We explain that
the contour of a loop momentum can be deformed away from the Glauber region at
low , so the above residual infrared divergence is factorized by means of
the standard eikonal approximation. The factorization is then restored in
the sense that a TMD parton density maintains its universality. Because the
resultant Glauber factor is independent of hadron flavors, experimental
constraints on its behavior are possible. The factorization can also be
restored for the transverse single-spin asymmetry in hadron-hadron collision at
low in a similar way, with the residual infrared divergence being
factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ
Ефективність симбіотичної азотфіксації в агроценозах України
Проведено порівняльну оцінку ефективності виробничих і перспективних штамів бульбочкових бактерій колекції Південної дослідної станції ІСГМ УААН у симбіозі з сучасними сортами бобових культур. Визначені високоефективні комбінації “сорти – штами”. Показано доцільність передпосівної інокуляції насіння бобових культур на фоні ґрунтової популяції ризобій.Проведена сравнительная оценка эффективности производственных и перспективных штаммов клубеньковых бактерий коллекции Южной опытной станции ИСХМ УААН в симбиозе с современными сортами бобовых культур. Определены высокоэффективные комбинации “сорта – штаммы”. Показана целесообразность предпосевной инокуляции семян бобовых культур на фоне почвенной популяции ризобий.The comparative estimation of rhisobia strains (from the collection of the Southern Experimental Station of Institute of Agricultural Microbiology UAAS) efficiency in symbiosis with modern legume cultivars was done. Highly effective complemented „cultivars – strains” combinations have been determined. It was shown the expediency of legume seeds pre-sowing treatment on background of soil rhisobia population
Numerical investigation of conjugated heat transfer in a channel with a moving depositing front
This article presents numerical simulations of conjugated heat transfer in a fouled channel with a moving depositing front. The depositing front separating the fluid and the deposit layer is captured using the level-set method. Fluid flow is modeled by the incompressible Navier–Stokes equations. Numerical solution is performed on a fixed mesh using the finite volume method. The effects of Reynolds number and thermal conductivity ratio between the deposit layer and the fluid on local Nusselt number as well as length-averaged Nusselt number are investigated. It is found that heat transfer performance, represented by the local and length-averaged Nusselt number reduces significantly in a fouled channel compared with that in a clean channel. Heat transfer performance decreases with the growth of the deposit layer. Increases in Reynolds, Prandtl numbers both enhance heat transfer. Besides, heat transfer is enhanced when the thermal conductivity ratio between the deposit layer and the fluid is lower than 20 but it decreases when the thermal conductivity ratio is larger than 2
Velocity Statistics in the Two-Dimensional Granular Turbulence
We studied the macroscopic statistical properties on the freely evolving
quasi-elastic hard disk (granular) system by performing a large-scale (up to a
few million particles) event-driven molecular dynamics systematically and found
that remarkably analogous to an enstrophy cascade process in the decaying
two-dimensional fluid turbulence. There are four typical stages in the freely
evolving inelastic hard disk system, which are homogeneous, shearing (vortex),
clustering and final state. In the shearing stage, the self-organized
macroscopic coherent vortices become dominant. In the clustering stage, the
energy spectra are close to the expectation of Kraichnan-Batchelor theory and
the squared two-particle separation strictly obeys Richardson law.Comment: 4 pages, 4 figures, to be published in PR
Low wave-functions of pions and kaons and their parton distribution functions
We study the low wave-functions of pions and kaons as an expansion in
terms of hadron-like Fock state fluctuations. In this formalism, pion and kaon
wave-functions are related one another. Consequently, the knowledge of the pion
structure allows the determination of parton distributions in kaons. In
addition, we show that the intrinsic (low ) sea of pions and kaons are
different due to their different valence quark structure. Finally, we analize
the feasibility of a method to extract kaon's parton distribution functions
within this approach and compare with available experimental data.Comment: 13 pages, 3 postscript figures include
Effects of electrode material and configuration on the characteristics of planar resistive switching devices
International audienc
Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD
Due to the enhancement of the couplings between Higgs boson and bottom quarks
in the minimal sypersymmetric standard model (MSSM), the cross section of the
process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be
considerably enhanced. We investigated the production of Higgs boson associated
with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to
h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO)
QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM
reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen
parameter space.Comment: accepted by Phys. Rev.
Testing the Meson Cloud Model in Inclusive Meson Production
We have applied the Meson Cloud Model to calculate inclusive momentum spectra
of pions and kaons produced in high energy proton-proton and proton-nucleus
collisions. For the first time these data are used to constrain the cloud
cut-off parameters. We show that it is possible to obtain a reasonable
description of data, especially the large () part of the
spectrum and at the same time describe (partially) the E866 data on and . We also discuss the relative strength of the
and vertices. We find out that the corresponding cut-off
parameters should be both soft and should not differ by more than 200 MeV from
each other. An additional source (other than the meson cloud) of sea antiquark
asymmetry, seems to be necessary to completely explain the data. A first
extension of the MCM to proton nucleus collisions is discussed.Comment: 14 pages, Latex, 6 ps figures. Submitted to Phys. Rev.
- …