40 research outputs found

    The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Get PDF
    Stars and planetary system

    Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold

    No full text
    The most efficient organic–inorganic perovskite solar cells (PSCs) contain the conventional n-i-p mesoscopic device architecture using a semiconducting TiO2 scaffold combined with a compact TiO2 blocking layer for selective electron transport. These devices achieve high power conversion efficiencies (15–22%) but mainly require high-temperature sintering (>450 °C), which is not possible for temperature-sensitive substrates. Thus far, comparably little effort has been spent on alternative low-temperature (<150 °C) routes to realize high-efficiency TiO2-based PSCs; instead, other device architectures have been promoted for low-temperature processing. In this paper the compatibility of the conventional mesoscopic TiO2 device architecture with low-temperature processing is presented for the first time with the combination of electron beam evaporation for the compact TiO2 and UV treatment for the mesoporous TiO2 layer. Vacuum evaporation is introduced as an excellent deposition technique of uniform compact TiO2 layers, adapting smoothly to the rough fluorine-doped tin oxide substrate surface. Effective removal of organic binders by UV light is shown for the mesoporous scaffold. Entirely low-temperature-processed PSCs with TiO2 scaffold reach encouraging stabilized efficiencies of up to 18.2%. This process fulfills all requirements for monolithic tandem devices with high-efficiency silicon heterojunction solar cells as the bottom cell

    CARMENES input catalogue of M dwarfs: II. High-resolution imaging with FastCam

    No full text
    Aims. We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods. We obtained high-resolution images in the I band with the lucky imaging instrument FastCam at the 1.5 m Telescopio Carlos Sánchez for 490 mid- to late-M dwarfs. For all the detected binaries, we measured angular separations, position angles, and magnitude differences in the I band. We also calculated the masses of each individual component and estimated orbital periods, using the available magnitude and colour relations for M dwarfs and our own M-spectral type and mass-M relations. To avoid biases in our sample selection, we built a volume-limited sample of M0.0-M5.0 dwarfs that is complete up to 86% within 14 pc. Results. From the 490 observed stars, we detected 80 companions in 76 systems, of which 30 are new discoveries. Another six companion candidates require additional astrometry to confirm physical binding. The multiplicity fraction in our observed sample is 16.7 ± 2.0%. The bias-corrected multiplicity fraction in our volume-limited sample is 19.5 ± 2.3% for angular separations of 0.2 to 5.0 arcsec (1.4-65.6 au), with a peak in the distribution of the projected physical separations at 2.5-7.5 au. For M0.0-M3.5 V primaries, our search is sensitive to mass ratios higher than 0.3 and there is a higher density of pairs with mass ratios over 0.8 compared to those at lower mass ratios. Binaries with projected physical separations shorter than 50 au also tend to be of equal mass. For 26 of our systems, we estimated orbital periods shorter than 50 a, 10 of which are presented here for the first time. We measured variations in angular separation and position angle that are due to orbital motions in 17 of these systems. The contribution of binaries and multiples with angular separations shorter than 0.2 arcsec, longer than 5.0 arcsec, and of spectroscopic binaries identified from previous searches, although not complete, may increase the multiplicity fraction of M dwarfs in our volume-limited sample to at least 36%.© ESO, 2017.Financial support was also provided by the Junta de Andalucia, and the Spanish Ministries of Science and Innovation and of Economy and Competitiveness, under grants 2011-FQM-7363, AP2009-0187, AYA2014-54348-C3-01/02/03-R, AYA2015-69350-C3-2-P, ESP2013-48391-C4-1-R, and ESP2014-57495-C2-2-R.Peer Reviewe
    corecore