47 research outputs found

    Protection of stainless-steels against corrosion in sulphidizing environments by Ce oxide coatings: X-ray absorption and thermogravimetric studies

    Get PDF
    In this paper a study is reported concerning ceramic coatings containing cerium oxide, prepared by the sol-gel method, used to protect Incoloy 800H against sulphidation. When the coating is sintered in air at 850°C good protection is obtained. In an X-ray absorption spectroscopic study of the coatings it was observed that the best protective coating contains all cerium as CeIV after pretreatment. After sulphidizing cerium was reduced to CeIII. Possible mechanisms to explain the protective properties are discussed

    Determination of the relative concentrations of rare earth ions by x-ray absorption spectroscopy: Application to terbium mixed oxides

    Get PDF
    A method, based on X-ray absorption spectroscopy (XAS) in the range 0.8–1.5 keV, to determine the relative amounts of rare earth ions in different valencies is explained and tested for the case of terbium mixed oxides. The results are in agreement with those obtained by existing analytical methods. The XAS method is advantageous in that it can be applied where other, conventional, methods break down

    The transition from the adiabatic to the sudden limit in core level photoemission: A model study of a localized system

    Full text link
    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. The system is modelled by three electron levels, one core level and two outer levels. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. We calculate the ratio r(omega) between the weights of the satellite and the main peak as a function of the photon energy omega. The transition from the adiabatic to the sudden limit takes place for quite small photoelectron kinetic energies. For such small energies, the variation of the dipole matrix element is substantial and described by the energy scale Ed. Without the coupling to the photoelectron, the corresponding ratio r0(omega) is determined by Ed and the satellite excitation energy dE. When the interaction potential with the continuum states is introduced, a new energy scale Es=1/(2Rs^2) enters, where Rs is a length scale of the interaction potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(omega)/r0(omega) is larger than its limiting value for large omega. The interference becomes small or weakly destructive for photoelectron energies of the order Es. For larger energies r(omega)/r0(omega) therefore typically has a weak undershoot. If this undershoot is neglected, r(omega)/r0(omega) reaches its limiting value on the energy scale Es.Comment: 18 pages, latex2e, 13 eps figure

    Electronic structure of the strongly hybridized ferromagnet CeFe2

    Full text link
    We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200

    Auger Effect in the High-Resolution Ce 3d-edge Resonant Photoemission

    Full text link
    The bulk-sensitive Ce 4ff spectral weights of various Ce compounds including CeFe2_2, CeNi2_2, and CeSi2_2 were obtained with the resonant photoemission technique at the Ce 3d-edge. We found the lineshapes change significantly with the small change of the incident photon energy. Detailed analysis showed that this phenomenon results primarily from the Auger transition between different multiplet states of the Ce 3d5/24f2\underline{3d_{5/2}}4f^2 (bar denotes a hole) electronic configuration in the intermediate state of the resonant process. This tells us that extra care should be taken for the choice of the resonant photon energy when extracting Ce 4ff spectral weights from the Ce 3dd-edge resonant photoemission spectra. The absorption energy corresponding to the lowest multiplet structure of the Ce 3d5/24f2\underline{3d_{5/2}}4f^2 configuration seems to be the logical choice.Comment: 13 pages, 5 figures, submitted to Phys. Rev.

    l2,3 absorption-spectra of the lighter 3d transition-metals

    No full text

    l2,3 absorption-spectra of the lighter 3d transition-metals

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    The electronic structure of 4d and 5d silicides

    Get PDF
    A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of the density of states and matrix elements for the compounds in their real crystal structures. Use is also made of x-ray emission spectra given in the literature. The electronic structure is analysed mainly in terms of the Si s, p and metal d states in relation to the various interactions, such as the metal-metal, metal-Si and Si-Si interaction. In discussing the trends of chemical bonding, we focus on the effect of the orbital overlap, the d-band occupancy and the composition.
    corecore