413 research outputs found

    Biodiversity in drinking water distribution systems:a brief review

    Get PDF
    In drinking water distribution systems, three groups of living organisms are usually found in the biofilm and circulating water: heterotrophic bacteria, free-living protozoa, and macro-invertebrates. Indirect evidence suggests that protozoa grazing in distribution systems can partially eliminate biomass production and accidental microbiological pollution. This paper examines the biodiversit in drinking water distribution systems

    Sustaining family forests in rural landscapes: Rationale, challenges, and an illustration from Oregon, USA

    Get PDF
    Family forests are critical components of rural landscapes, societies and economies. In Oregon, where nonindustrial private forests comprise only 16% of the forestland base, the ecological, social and economic impact of this ownership category is disproportionately large. This is due to the landscape position these lands occupy, the diversification they contribute to forest cover and local economies, and the political and cultural connections they provide to urban populations. The significance of this ownership category is even greater in the United States as a whole, where nonindustrial private forests comprise nearly two-thirds of the commercial forestland base, dominating rural landscapes in many regions of the country. Despite the important role family forests play, their ability to contribute to the wellbeing of rural areas is challenged by several dynamic factors, including industrial consolidation in global wood markets, loss of family forestland to corporate ownership, and parcelization and fragmentation of family forestland at the urban fringe. Moreover, family forestry does not enjoy a strong social contract with the American public, which is largely ignorant of the existence of this ownership class. A foundation of broad social approval and appreciation for family forestry is a prerequisite to development of policies which can sustain family forestland ownerships and the contributions they make. This paper draws from recent research in Oregon to argue that, whereas most research on nonindustrial private forests has focused on economics and management at the individual producer level, these challenges demand greater attention to the role of family forests in the wider context of landscape, culture and rural economy

    Efficiency of the dynamical mechanism

    Full text link
    The most extreme starbursts occur in galaxy mergers, and it is now acknowledged that dynamical triggering has a primary importance in star formation. This triggering is due partly to the enhanced velocity dispersion provided by gravitational instabilities, such as density waves and bars, but mainly to the radial gas flows they drive, allowing large amounts of gas to condense towards nuclear regions in a small time scale. Numerical simulations with several gas phases, taking into account the feedback to regulate star formation, have explored the various processes, using recipes like the Schmidt law, moderated by the gas instability criterion. May be the most fundamental parameter in starbursts is the availability of gas: this sheds light on the amount of external gas accretion in galaxy evolution. The detailed mechanisms governing gas infall in the inner parts of galaxy disks are discussed.Comment: 6 pages, 3 figures, to be published in "Starbursts - From 30 Doradus to Lyman break galaxies", ed. R. de Grijs and R. Gonzalez-Delgad

    Total photoproduction cross-section at very high energy

    Get PDF
    In this paper we apply to photoproduction total cross-section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross-sections at TeV energies than models based on factorization but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes concern added references, clarifications of the Soft Gluon Resummation method used in the paper, and other changes requested by the Journal referee which do not change the results of the original versio

    A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions

    Get PDF
    Aims: The understanding of the dynamics of surface microbial colonization with concomitant monitoring of biofilm formation requires the development of biofilm reactors that enable direct and real-time evaluation under different hydrodynamic conditions. Methods and Results: This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, both non-destructive and destructive biofilm analyses. This is managed without the stoppage of the flow, thus reducing the contamination and the disturbance of the biofilm development. With this flow cell, biofilm growth and respiratory activity can be easily followed, either in well-defined laboratory conditions or in an industrial environment. Conclusions, Significance and Impact of the Study: The reproducible and typical biofilm development curves obtained, validated this flow cell and confirmed its potential for different biofilm-related studies, which can include biocidal treatment.Instituto de Biotecnologia e Química Fina(IBQF)

    Next-to-Leading Order Cross Sections for Tagged Reactions

    Get PDF
    We extend the phase space slicing method of Giele, Glover and Kosower for performing next-to-leading order jet cross section calculations in two important ways: we show how to include fragmentation functions and how to include massive particles. These extensions allow the application of this method to not just jet cross sections but also to cross sections in which a particular final state particle, including a DD or BB-meson, is tagged.Comment: 36 pages, Latex Small corrections to text. To appear in Phys. Rev.

    Rings and bars: unmasking secular evolution of galaxies

    Full text link
    Secular evolution gradually shapes galaxies by internal processes, in contrast to early cosmological evolution which is more rapid. An important driver of secular evolution is the flow of gas from the disk into the central regions, often under the influence of a bar. In this paper, we review several new observational results on bars and nuclear rings in galaxies. They show that these components are intimately linked to each other, and to the properties of their host galaxy. We briefly discuss how upcoming observations, e.g., imaging from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor change

    Electroactive biofilms: new means for electrochemistry

    Get PDF
    This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilm

    Investigation into the cause of spontaneous emulsification of a free steel droplet : validation of the chemical exchange pathway

    Get PDF
    Small Fe-based droplets have been heated to a molten phase suspended within a slag medium to replicate a partial environment within the basic oxygen furnace (BOF). The confocal scanning laser microscope (CSLM) has been used as a heating platform to interrogate the effect of impurities and their transfer across the metal/slag interface, on the emulsification of the droplet into the slag medium. The samples were then examined through X-ray computer tomography (XCT) giving the mapping of emulsion dispersion in 3D space, calculating the changing of interfacial area between the two materials, and changes of material volume due to material transfer between metal and slag. Null experiments to rule out thermal gradients being the cause of emulsification have been conducted as well as replication of the previously reported study by Assis et al.[1] which has given insights into the mechanism of emulsification. Finally chemical analysis was conducted to discover the transfer of oxygen to be the cause of emulsification, leading to a new study of a system with undergoing oxygen equilibration

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered
    corecore