197 research outputs found
Alternative Technique for "Complex" Spectra Analysis
. The choice of a suitable random matrix model of a complex system is very
sensitive to the nature of its complexity. The statistical spectral analysis of
various complex systems requires, therefore, a thorough probing of a wide range
of random matrix ensembles which is not an easy task. It is highly desirable,
if possible, to identify a common mathematcal structure among all the ensembles
and analyze it to gain information about the ensemble- properties. Our
successful search in this direction leads to Calogero Hamiltonian, a
one-dimensional quantum hamiltonian with inverse-square interaction, as the
common base. This is because both, the eigenvalues of the ensembles, and, a
general state of Calogero Hamiltonian, evolve in an analogous way for arbitrary
initial conditions. The varying nature of the complexity is reflected in the
different form of the evolution parameter in each case. A complete
investigation of Calogero Hamiltonian can then help us in the spectral analysis
of complex systems.Comment: 20 pages, No figures, Revised Version (Minor Changes
Quantum Computing via The Bethe Ansatz
We recognize quantum circuit model of computation as factorisable scattering
model and propose that a quantum computer is associated with a quantum
many-body system solved by the Bethe ansatz. As an typical example to support
our perspectives on quantum computation, we study quantum computing in
one-dimensional nonrelativistic system with delta-function interaction, where
the two-body scattering matrix satisfies the factorisation equation (the
quantum Yang--Baxter equation) and acts as a parametric two-body quantum gate.
We conclude by comparing quantum computing via the factorisable scattering with
topological quantum computing.Comment: 6 pages. Comments welcom
Diagonalization of an Integrable Discretization of the Repulsive Delta Bose Gas on the Circle
We introduce an integrable lattice discretization of the quantum system of n
bosonic particles on a ring interacting pairwise via repulsive delta
potentials. The corresponding (finite-dimensional) spectral problem of the
integrable lattice model is solved by means of the Bethe Ansatz method. The
resulting eigenfunctions turn out to be given by specializations of the
Hall-Littlewood polynomials. In the continuum limit the solution of the
repulsive delta Bose gas due to Lieb and Liniger is recovered, including the
orthogonality of the Bethe wave functions first proved by Dorlas (extending
previous work of C.N. Yang and C.P. Yang).Comment: 25 pages, LaTe
Thermodynamics of the Anisotropic Spin-1/2 Heisenberg Chain and Related Quantum Chains
The free energy and correlation lengths of the spin-1/2 chain are
studied at finite temperature. We use the quantum transfer matrix approach and
derive non-linear integral equations for all eigenvalues. Analytic results are
presented for the low-temperature asymptotics, in particular for the critical
chain in an external magnetic field. These results are compared to
predictions by conformal field theory. The integral equations are solved
numerically for the non-critical chain and the related spin-1 biquadratic
chain at arbitrary temperature.Comment: 31 pages, LATEX, 5 PostScript figures appended, preprint
cologne-93-471
Hidden dimers and the matrix maps: Fibonacci chains re-visited
The existence of cycles of the matrix maps in Fibonacci class of lattices is
well established. We show that such cycles are intimately connected with the
presence of interesting positional correlations among the constituent `atoms'
in a one dimensional quasiperiodic lattice. We particularly address the
transfer model of the classic golden mean Fibonacci chain where a six cycle of
the full matrix map exists at the centre of the spectrum [Kohmoto et al, Phys.
Rev. B 35, 1020 (1987)], and for which no simple physical picture has so far
been provided, to the best of our knowledge. In addition, we show that our
prescription leads to a determination of other energy values for a mixed model
of the Fibonacci chain, for which the full matrix map may have similar cyclic
behaviour. Apart from the standard transfer-model of a golden mean Fibonacci
chain, we address a variant of it and the silver mean lattice, where the
existence of four cycles of the matrix map is already known to exist. The
underlying positional correlations for all such cases are discussed in details.Comment: 14 pages, 2 figures. Submitted to Physical Review
The Aharonov-Bohm effect for an exciton
We study theoretically the exciton absorption on a ring shreded by a magnetic
flux. For the case when the attraction between electron and hole is
short-ranged we get an exact solution of the problem. We demonstrate that,
despite the electrical neutrality of the exciton, both the spectral position of
the exciton peak in the absorption, and the corresponding oscillator strength
oscillate with magnetic flux with a period ---the universal flux
quantum. The origin of the effect is the finite probability for electron and
hole, created by a photon at the same point, to tunnel in the opposite
directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated
references and an improved chapter on possible experimental realization
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Distributional impacts of cash allowances for children: A microsimulation analysis for Russia and Europe
This article analyses programmes of cash allowances for children and compares their effectiveness in combating child poverty in Russia and four European Union (EU) countries representing alternative family policy models – Sweden, Germany, Belgium and the United Kingdom. Using microsimulation models, this article estimates the potential gains if the Russian system were re-designed along the policy parameters of these countries and vice versa. The results confirm that the poverty impact of the programme design is smaller than that of the level of spending. Other conditions being equal, the best distributional outcomes for children are achieved by applying the mix of universal and means-tested child benefits, such as those employed by the United Kingdom and Belgium. At the same time, the Russian design of child allowances does not appear to be less effective in terms of its impact on child poverty when transferred to European countries in place of their current arrangements
On the dispersion of solid particles in a liquid agitated by a bubble swarm
This article deals with the dispersion of solid particles in a liquid agitated by a homogeneous swarm of bubbles. The scale of interest lies between the plant scale (of the order of the tank) and the microscale (less than the bubble diameter). The strategy consists in simulating both the twophase flow of deforming bubbles and the motion of solid particles. The evolution of the spatial distribution of particles together with the encounter and entrainment phenomena is studied as a function of the void fraction and the relative size and mass of particles. The influence of the shape of the bubble and of the model of forces that govern the motion of particles is also considered
- …