2,029 research outputs found

    From Fake Supergravity to Superstars

    Get PDF
    The fake supergravity method is applied to 5-dimensional asymptotically AdS spacetimes containing gravity coupled to a real scalar and an abelian gauge field. The motivation is to obtain bulk solutions with R x S^3 symmetry in order to explore the AdS/CFT correspondence when the boundary gauge theory is on R x S^3. A fake supergravity action, invariant under local supersymmetry through linear order in fermion fields, is obtained. The gauge field makes things more restrictive than in previous applications of fake supergravity which allowed quite general scalar potentials. Here the superpotential must take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom is the choice of the constant k. The fermion transformation rules of fake supergravity lead to fake Killing spinor equations. From their integrability conditions, we obtain first order differential equations which we solve analytically to find singular electrically charged solutions of the Lagrangian field equations. A Schwarzschild mass term can be added to produce a horizon which shields the singularity. The solutions, which include "superstars", turn out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure

    Finite Element Analysis of Stress-Strain Response at the Tool Pin During Friction Stir Process

    Get PDF
    AbstractFriction stir welding (FSW) is a relatively new solid-state joining process which is considered energy efficient, eco-friendly and versatile. High stress and strain occur at the rotating tool, consisting of a pin (probe) and a shoulder, during the friction stir process. The geometrical design of the tool has some impact in terms of stress and strain once static load is applied against the tool. In this work, specific stress can be found on the tool due to the plunging and travel process that is analysed using finite element method. In the present work, a steady state finite element stress analysis of friction stir welding was carried out using CATIA V5 software. The critical points of the FSW tool are located mainly on the edge between the shoulder and the pin, where a large amount of stress is found and further leads to failure or tool defects. This critical stress and strain can be reduced by enlarging the diameter size of the pin and increasing tool life

    Universal features of the order-parameter fluctuations : reversible and irreversible aggregation

    Full text link
    We discuss the universal scaling laws of order parameter fluctuations in any system in which the second-order critical behaviour can be identified. These scaling laws can be derived rigorously for equilibrium systems when combined with the finite-size scaling analysis. The relation between order parameter, criticality and scaling law of fluctuations has been established and the connexion between the scaling function and the critical exponents has been found. We give examples in out-of-equilibrium aggregation models such as the Smoluchowski kinetic equations, or of at-equilibrium Ising and percolation models.Comment: 19 pages, 10 figure

    Antiferromagnetism in the Exact Ground State of the Half Filled Hubbard Model on the Complete-Bipartite Graph

    Full text link
    As a prototype model of antiferromagnetism, we propose a repulsive Hubbard Hamiltonian defined on a graph \L={\cal A}\cup{\cal B} with AB={\cal A}\cap {\cal B}=\emptyset and bonds connecting any element of A{\cal A} with all the elements of B{\cal B}. Since all the hopping matrix elements associated with each bond are equal, the model is invariant under an arbitrary permutation of the A{\cal A}-sites and/or of the B{\cal B}-sites. This is the Hubbard model defined on the so called (NA,NB)(N_{A},N_{B})-complete-bipartite graph, NAN_{A} (NBN_{B}) being the number of elements in A{\cal A} (B{\cal B}). In this paper we analytically find the {\it exact} ground state for NA=NB=NN_{A}=N_{B}=N at half filling for any NN; the repulsion has a maximum at a critical NN-dependent value of the on-site Hubbard UU. The wave function and the energy of the unique, singlet ground state assume a particularly elegant form for N \ra \inf. We also calculate the spin-spin correlation function and show that the ground state exhibits an antiferromagnetic order for any non-zero UU even in the thermodynamic limit. We are aware of no previous explicit analytic example of an antiferromagnetic ground state in a Hubbard-like model of itinerant electrons. The kinetic term induces non-trivial correlations among the particles and an antiparallel spin configuration in the two sublattices comes to be energetically favoured at zero Temperature. On the other hand, if the thermodynamic limit is taken and then zero Temperature is approached, a paramagnetic behavior results. The thermodynamic limit does not commute with the zero-Temperature limit, and this fact can be made explicit by the analytic solutions.Comment: 19 pages, 5 figures .ep

    Bubbles on Manifolds with a U(1) Isometry

    Get PDF
    We investigate the construction of five-dimensional, three-charge supergravity solutions that only have a rotational U(1) isometry. We show that such solutions can be obtained as warped compactifications with a singular ambi-polar hyper-Kahler base space and singular warp factors. We show that the complete solution is regular around the critical surface of the ambi-polar base. We illustrate this by presenting the explicit form of the most general supersymmetric solutions that can be obtained from an Atiyah-Hitchin base space and its ambi-polar generalizations. We make a parallel analysis using an ambi-polar generalization of the Eguchi-Hanson base space metric. We also show how the bubbling procedure applied to the ambi-polar Eguchi-Hanson metric can convert it to a global AdS_2xS^3 compactification.Comment: 33 pages, 5 figures, LaTeX; references adde

    Meson Screening Mass in a Strongly Coupled Pion Superfluid

    Full text link
    We calculate the meson screening mass in a pion superfluid in the framework of Nambu--Jona-Lasinio model. The minimum of the attractive quark potential is always located at the phase boundary of pion superfluid. Different from the temperature and baryon density effect, the potential at finite isospin density can not be efficiently suppressed and the matter is always in a strongly coupled phase due to the Goldstone mode in the pion superfluid.Comment: 8 pages, 7 figures(Accepted by European Physical Journal C

    To wet or not to wet: that is the question

    Full text link
    Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy

    Meson screening masses from lattice QCD with two light and the strange quark

    Full text link
    We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4Tc. Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3Tc, indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.Comment: Published versio
    corecore