43 research outputs found
Analysis of volume and topography of adipose tissue in the trunk: Results of MRI of 11,141 participants in the German National Cohort
This research addresses the assessment of adipose tissue (AT) and spatial distribution of visceral (VAT) and subcutaneous fat (SAT) in the trunk from standardized magnetic resonance imaging at 3 T, thereby demonstrating the feasibility of deep learning (DL)-based image segmentation in a large population-based cohort in Germany (five sites). Volume and distribution of AT play an essential role in the pathogenesis of insulin resistance, a risk factor of developing metabolic/cardiovascular diseases. Cross-validated training of the DL-segmentation model led to a mean Dice similarity coefficient of >0.94, corresponding to a mean absolute volume deviation of about 22 ml. SAT is significantly increased in women compared to men, whereas VAT is increased in males. Spatial distribution shows age- and body mass index-related displacements. DL-based image segmentation provides robust and fast quantification of AT (≈15 s per dataset versus 3 to 4 hours for manual processing) and assessment of its spatial distribution from magnetic resonance images in large cohort studies
The Inter-genebank Potato Database and the dimensions of available wild potato germplasm
The Association of Potato Inter-genebank Collaborators (APIC) constructed a database of all wild potato holdings of the most important potato genebanks in Europe, the United States, Peru, and Argentina. The Inter-genebank Potato Database (IPD) now contains data of 11,819 wild potato accessions conserved in seven potato genebanks. The collector's number is the key identifier used to merge all databases into the IPD. A total of 7,112 different wild potato accessions were identified, which comprise 5,306 accessions with known collector's numbers. The IPD passport database showed that almost 30% of accessions held in APIC genebanks are from Argentina, a country that comprises less species diversity than Peru and Bolivia. These latter countries are represented by 24% and 20% of accessions, respectively. APIC genebanks maintain 188 Solanum taxa out of more than 230 recognized by the latest comprehensive treatment of potatoes (Solanum sect. Petota) by Hawkes (1990). About 60% of the accessions comprise only 20 taxa represented by 785 to 92 accessions each. Conversely, 2% of the accessions comprise 72 taxa and are represented by five or fewer accessions each. About 70 taxa are not available in any genebank. The IPD evaluation database comprises 5,603 records with data from more than 33,000 evaluations of wild potato accessions. Fifty-five traits are summarized, including the reactions of the accessions to 12 pathotypes or races or strains of 12 fungi, four bacteria, 12 viruses, one viroid, 13 nematodes, and seven insects; response to heat and cold stress; and content of dry matter, starch, vitamin C, amylase, reducing sugars, and glycoalkaloids. About 30% of the wild potato populations screened showed various levels of resistance to most of the diseases and pests evaluated. The IPD database is available on the Internet at www.potgenebank.org
International cooperation in potato germplasm
A consortium of world potato (Solanum sp.) gene banks has been created to address common problems and facilitate efficient management of potato genetic resources from a global perspective. The Association of Potato Intergenebank Collaborators (APIC) was initiated by the German-Dutch (BGRC), International Potato Center (CIP), and United States (NRSP-6) potato gene banks. National collections from Argentina, Ecuador, Peru, United Kingdom, and former DDR and USSR also are participating. Progress has been made on a joint data base of germplasm identifiers and evaluation data, technology exchange, joint research, and cooperation in germplasm preservation and collecting.</p
Electrophysiological analysis of the mutated Na,K-ATPase cation binding pocket.
Contains fulltext :
142631.pdf (Publisher’s version ) (Open Access)Na,K-ATPase mediates net electrogenic transport by extruding three Na+ ions and importing two K+ ions across the plasma membrane during each reaction cycle. We mutated putative cation coordinating amino acids in transmembrane hairpin M5-M6 of rat Na,K-ATPase: Asp776 (Gln, Asp, Ala), Glu779 (Asp, Gln, Ala), Asp804 (Glu, Asn, Ala), and Asp808 (Glu, Asn, Ala). Electrogenic cation transport properties of these 12 mutants were analyzed in two-electrode voltage-clamp experiments on Xenopus laevis oocytes by measuring the voltage dependence of K+-stimulated stationary currents and pre-steady-state currents under electrogenic Na+/Na+ exchange conditions. Whereas mutants D804N, D804A, and D808A hardly showed any Na+/K+ pump currents, the other constructs could be classified according to the [K+] and voltage dependence of their stationary currents; mutants N776A and E779Q behaved similarly to the wild-type enzyme. Mutants E779D, E779A, D808E, and D808N had in common a decreased apparent affinity for extracellular K+. Mutants N776Q, N776D, and D804E showed large deviations from the wild-type behavior; the currents generated by mutant N776D showed weaker voltage dependence, and the current-voltage curves of mutants N776Q and D804E exhibited a negative slope. The apparent rate constants determined from transient Na+/Na+ exchange currents are rather voltage-independent and at potentials above -60 mV faster than the wild type. Thus, the characteristic voltage-dependent increase of the rate constants at hyperpolarizing potentials is almost absent in these mutants. Accordingly, dislocating the carboxamide or carboxyl group of Asn776 and Asp804, respectively, decreases the extracellular Na+ affinity
Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine.
Contains fulltext :
80335.pdf (publisher's version ) (Open Access)Mutations in three different genes have been implicated in familial hemiplegic migraine (FHM), two of them code for neuronal voltage-gated cation channels, CACNA1A and SCN1A, while the third encodes ATP1A2, the alpha(2)-isoform of the Na(+)/K(+)-ATPase's catalytic subunit, thus classifying FHM as an ion channel/ion transporter disorder. The Na(+)/K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is therefore critical for the activity of ion channels and transporters involved in neurotransmitter uptake or Ca(2+) signaling. Diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations, which reach far beyond simple loss-of-function. We have shown recently that ATP1A2 mutations frequently lead to changes in the enzyme's voltage-dependent properties, kinetics or apparent cation affinities. Here, we present functional data on a so far uncharacterized set of ATP1A2 mutations (G301R, R908Q and P979L) upon expression in Xenopus oocytes and HEK293FT cells, and provide evidence for a novel pathophysiological mechanism. Whereas the G301R mutant was inactive, no functional changes were observed for mutants R908Q and P979L in the oocyte expression system. However, the R908Q mutant was less effectively expressed in the plasma membrane of oocytes, making it the first missense mutation to result in defective plasma membrane targeting. Notably, the P979L mutant exhibited the same cellular expression profile as the wild-type protein, both in Xenopus oocytes and in transfected HEK293FT cells grown at 28 degrees C, but much less P979L protein was found upon cell growth at 37 degrees C, showing for the first time that temperature-sensitive effects on protein stability can underlie ATP1A2 loss-of-function
Frost tolerance in wild potatoes : Assessing the predictivity of taxonomic, geographic and ecological factors
The use of genetic resources could be more effective and efficient if we were able to predict the presence or absence of useful traits in different populations or accessions. We analyzed the extent to which taxonomic, geographic and ecological factors can predict the presence of frost tolerance in wild potatoes. We used screening data for 1646 samples from 87 species that had been collected in 12 countries in the Americas. There was a strong association of frost tolerance with species and to a lesser extent with taxonomic series. There was significant geographic clustering of areas with wild potatoes with similar levels of frost tolerance. Areas with a high level of frost tolerance are the central and southern Peruvian Andes, the lowlands of Argentina and adjacent areas, and a small area in the central Chilean Andes. There is a greater chance of finding wild potatoes with high levels of frost tolerance in areas with a yearly mean minimum temperature below 3 C than there is in warmer areas. However, temperature is only a weak predictor of frost tolerance. Temperature data alone did not predict observed frost tolerance in eastern Argentina/Uruguay and falsely predicted it in the southwestern United States. Because many wild potato species occur over small areas, taxonomic, ecological, and geographical factors are difficult to disentangle