61 research outputs found

    Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae)

    Get PDF
    Evolutionary rate heterogeneity and rapid radiations are common phenomena in organismal evolution and represent major challenges for reconstructing deep-level phylogenies. Here we detected substantial conflicts in and among data sets as well as uncertainty concerning relationships among lineages of Vitaceae from individual gene trees, supernetworks and tree certainty values. Congruent deep-level relationships of Vitaceae were retrieved by comprehensive comparisons of results from optimal partitioning analyses, multispecies coalescent approaches and the Bayesian concordance method. We found that partitioning schemes selected by PartitionFinder were preferred over those by gene or by codon position, and the unpartitioned model usually performed the worst. For a data set with conflicting signals, however, the unpartitioned model outperformed models that included more partitions, demonstrating some limitations to the effectiveness of concatenation for these data. For a transcriptome data set, fast coalescent methods (STAR and MP-EST) and a Bayesian concordance approach yielded congruent topologies with trees from the concatenated analyses and previous studies. Our results highlight that well-resolved gene trees are critical for the effectiveness of coalescent-based methods. Future efforts to improve the accuracy of phylogenomic analyses should emphasize the development of newmethods that can accommodate multiple biological processes and tolerate missing data while remaining computationally tractable. (C) The Willi Hennig Society 2017.National Natural Science Foundation of China [NNSF 31500179, 31590822, 31270268]; National Basic Research Program of China [2014CB954101]; National Science Foundation [DEB0743474]; Smithsonian Scholarly Studies Grant Program and the Endowment Grant Program; CAS/SAFEA International Partnership Program for Creative Research Teams; Laboratory of Analytical Biology of the National Museum of Natural History, Smithsonian Institution; Science and Technology Basic Work [2013FY112100]info:eu-repo/semantics/publishedVersio

    Accounting for phylogenetic uncertainty in biogeography: A bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus)

    No full text
    The phylogeny of the thrushes (Aves: Turdus) has been difficult to reconstruct due to short internal branches and lack of node support for certain parts of the tree. Reconstructing the biogeographic history of this group is further complicated by the fact that current implementations of biogeographic methods, such as dispersal-vicariance analysis (DIVA; Ronquist, 1997), require a fully resolved tree. Here, we apply a Bayesian approach to dispersal-vicariance analysis that accounts for phylogenetic uncertainty and allows amore accurate analysis of the biogeographic history of lineages. Specifically, ancestral area reconstructions can be presented as marginal distributions, thus displaying the underlying topological uncertainty. Moreover, if there are multiple optimal solutions for a single node on a certain tree, integrating over the posterior distribution of trees often reveals a preference for a narrower set of solutions.Wefindthat despite the uncertainty in tree topology, ancestral area reconstructions indicate that the Turdus clade originated in the eastern Palearctic during the Late Miocene. This was followed by an early dispersal to Africa from where a worldwide radiation took place. The uncertainty in tree topology and short branch lengths seems to indicate that this radiation took place within a limited time span during the Late Pliocene. The results support the role of Africa as a probable source area for intercontinental dispersals as suggested for other passerine groups, including basal diversification within the songbird tree. Copyright © Society of Systematic Biologists.I.S. was supported by the National Science Foundation through NESCENT “Biogeography Working Group” and by the National Swedish Research Council (grant 621-2003-456).Peer Reviewe

    Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae)

    No full text
    The economically important soapberry family (Sapindaceae) comprises about 1900 species mainly found in the tropical regions of the world, with only a few genera being restricted to temperate areas. The infrafamilial classification of the Sapindaceae and its relationships to the closely related Aceraceae and Hippocastanaceae - which have now been included in an expanded definition of Sapindaceae (i.e., subfamily Hippocastanoideae) - have been debated for decades. Here we present a phylogenetic analysis of Sapindaceae based on eight DNA sequence regions from the plastid and nuclear genomes and including 85 of the 141 genera defined within the family. Our study comprises 997 new sequences of Sapindaceae from 152 specimens. Despite presenting 18.6% of missing data our complete data set produced a topology fully congruent with the one obtained from a subset without missing data, but including fewer markers. The use of additional information therefore led to a consistent result in the relative position of clades and allowed the definition of a new phylogenetic hypothesis. Our results confirm a high level of paraphyly and polyphyly at the subfamilial and tribal levels and even contest the monophyletic status of several genera. Our study confirms that the Chinese monotypic genus Xanthoceras is sister to the rest of the family, in which subfamily Hippocastanoideae is sister to a clade comprising subfamilies Dodonaeoideae and Sapindoideae. On the basis of the strong support demonstrated in Sapindoideae, Dodonaeoideae and Hippocastanoideae as well as in 14 subclades, we propose and discuss informal groupings as basis for a new classification of Sapindaceae. © 2009 Elsevier Inc. All rights reserved.Peer Reviewe
    corecore