105 research outputs found

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Embedding a Native State into a Random Heteropolymer Model: The Dynamic Approach

    Full text link
    We study a random heteropolymer model with Langevin dynamics, in the supersymmetric formulation. Employing a procedure similar to one that has been used in static calculations, we construct an ensemble in which the affinity of the system for a native state is controlled by a "selection temperature" T0. In the limit of high T0, the model reduces to a random heteropolymer, while for T0-->0 the system is forced into the native state. Within the Gaussian variational approach that we employed previously for the random heteropolymer, we explore the phases of the system for large and small T0. For large T0, the system exhibits a (dynamical) spin glass phase, like that found for the random heteropolymer, below a temperature Tg. For small T0, we find an ordered phase, characterized by a nonzero overlap with the native state, below a temperature Tn \propto 1/T0 > Tg. However, the random-globule phase remains locally stable below Tn, down to the dynamical glass transition at Tg. Thus, in this model, folding is rapid for temperatures between Tg and Tn, but below Tg the system can get trapped in conformations uncorrelated with the native state. At a lower temperature, the ordered phase can also undergo a dynamical glass transition, splitting into substates separated by large barriers.Comment: 19 pages, revtex, 6 figure

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Burden of Neurological Disorders across the US from 1990-2017: A Global Burden of Disease Study

    Get PDF
    Importance: Accurate and up-to-date estimates on incidence, prevalence, mortality, and disability-adjusted life-years (burden) of neurological disorders are the backbone of evidence-based health care planning and resource allocation for these disorders. It appears that no such estimates have been reported at the state level for the US. Objective: To present burden estimates of major neurological disorders in the US states by age and sex from 1990 to 2017. Design, Setting, and Participants: This is a systematic analysis of the Global Burden of Disease (GBD) 2017 study. Data on incidence, prevalence, mortality, and disability-adjusted life-years (DALYs) of major neurological disorders were derived from the GBD 2017 study of the 48 contiguous US states, Alaska, and Hawaii. Fourteen major neurological disorders were analyzed: stroke, Alzheimer disease and other dementias, Parkinson disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, traumatic brain injury, spinal cord injuries, brain and other nervous system cancers, meningitis, encephalitis, and tetanus. Exposures: Any of the 14 listed neurological diseases. Main Outcome and Measure: Absolute numbers in detail by age and sex and age-standardized rates (with 95 uncertainty intervals) were calculated. Results: The 3 most burdensome neurological disorders in the US in terms of absolute number of DALYs were stroke (3.58 95% uncertainty interval UI], 3.25-3.92] million DALYs), Alzheimer disease and other dementias (2.55 95% UI, 2.43-2.68 million DALYs), and migraine (2.40 95% UI, 1.53-3.44 million DALYs). The burden of almost all neurological disorders (in terms of absolute number of incident, prevalent, and fatal cases, as well as DALYs) increased from 1990 to 2017, largely because of the aging of the population. Exceptions for this trend included traumatic brain injury incidence (-29.1% 95% UI, -32.4% to -25.8%); spinal cord injury prevalence (-38.5% 95% UI, -43.1% to -34.0%); meningitis prevalence (-44.8% 95% UI, -47.3% to -42.3%), deaths (-64.4% 95% UI, -67.7% to -50.3%), and DALYs (-66.9% 95% UI, -70.1% to -55.9%); and encephalitis DALYs (-25.8% 95% UI, -30.7% to -5.8%). The different metrics of age-standardized rates varied between the US states from a 1.2-fold difference for tension-type headache to 7.5-fold for tetanus; southeastern states and Arkansas had a relatively higher burden for stroke, while northern states had a relatively higher burden of multiple sclerosis and eastern states had higher rates of Parkinson disease, idiopathic epilepsy, migraine and tension-type headache, and meningitis, encephalitis, and tetanus. Conclusions and Relevance: There is a large and increasing burden of noncommunicable neurological disorders in the US, with up to a 5-fold variation in the burden of and trends in particular neurological disorders across the US states. The information reported in this article can be used by health care professionals and policy makers at the national and state levels to advance their health care planning and resource allocation to prevent and reduce the burden of neurological disorders.. © 2021 American Medical Association. All rights reserved

    The Physics of the B Factories

    Get PDF

    Neurophysiological correlates of nociceptive heterosynaptic long-term potentiation in humans.

    No full text
    Contains fulltext : 89626.pdf (publisher's version ) (Closed access)Long-term potentiation (LTP) is a cellular model of synaptic plasticity and reflects an increase of synaptic strength. LTP is also present in the nociceptive system and is believed to be one of the key mechanisms involved in the manifestations of chronic pain. LTP manifested as an increased response in pain perception can be induced in humans using high-frequency electrical stimulation (HFS). The aim of this study was to induce spinal heterosynaptic LTP using HFS and investigate its heterotopic effects on event-related potentials (ERPs) to repeated nonpainful cutaneous stimuli as a possible electrophysiological cortical correlate of sensitization. Twenty-two healthy subjects were randomly assigned to one of the two experimental conditions: HFS and control stimulation. Before and after the stimulation, both conditions received heterotopic mechanical (pinprick) and paired nonpainful electrical test stimuli to quantify and confirm the effects of HFS on the behavioral level. ERPs to paired nonpainful electrical stimulation were measured simultaneously. Conditioning HFS resulted in significant heterotopic effects after 30 min, including increased perceived intensity in response to (pinprick) mechanical and paired nonpainful electrical stimulation compared with control. The paired nonpainful electrical stimuli were accompanied by significantly enhanced responses regarding the ERP N1-P2 peak-to-peak and P300 amplitude compared with control. These findings suggest that HFS is capable of producing heterosynaptic spinal LTP that can be measured not only behaviorally but also using ERPs.1 april 201

    Emotion in Motion: A Study of Music and Affective Response

    Get PDF
    Emotion in Motion’ is an experiment designed to understand the emotional reaction of people to a variety of musical excerpts, via self-report questionnaires and the recording of electrodermal response (EDR) and pulse oximetry (HR) signals. The experiment ran for 3 months as part of a public exhibition, having nearly 4000 participants and over 12000 listening samples. This paper presents the methodology used by the authors to approach this research, as well as preliminary results derived from the self-report data and the physiology
    corecore