158 research outputs found
Force and Motion Generation of Molecular Motors: A Generic Description
We review the properties of biological motor proteins which move along linear
filaments that are polar and periodic. The physics of the operation of such
motors can be described by simple stochastic models which are coupled to a
chemical reaction. We analyze the essential features of force and motion
generation and discuss the general properties of single motors in the framework
of two-state models. Systems which contain large numbers of motors such as
muscles and flagella motivate the study of many interacting motors within the
framework of simple models. In this case, collective effects can lead to new
types of behaviors such as dynamic instabilities of the steady states and
oscillatory motion.Comment: 29 pages, 9 figure
Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate
We present a theory to compute the force due to light upon a particle on a
dielectric plane by the Coupled Dipole Method (CDM). We show that, with this
procedure, two equivalent ways of analysis are possible, both based on
Maxwell's stress tensor. The interest in using this method is that the nature
and size or shape of the object, can be arbitrary. Even more, the presence of a
substrate can be incorporated. To validate our theory, we present an analytical
expression of the force due to the light acting on a particle either in
presence, or not, of a surface. The plane wave illuminating the sphere can be
either propagating or evanescent. Both two and three dimensional calculations
are studied.Comment: 10 pages, 8 figures and 3 table
Measurement of a small atmospheric ratio
From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900
muon-like and 983 electron-like single-ring atmospheric neutrino interactions
were detected with momentum MeV/, MeV/, and
with visible energy less than 1.33 GeV. Using a detailed Monte Carlo
simulation, the ratio was measured to be , consistent with previous results from the
Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from
theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Measurement of radon concentrations at Super-Kamiokande
Radioactivity from radon is a major background for observing solar neutrinos
at Super-Kamiokande. In this paper, we describe the measurement of radon
concentrations at Super-Kamiokande, the method of radon reduction, and the
radon monitoring system. The measurement shows that the current low-energy
event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the
Super-Kamiokande water of less than 1.4 mBq/m.Comment: 11 pages, 4 figure
Knockdown of zebrafish Nav1.6 sodium channel impairs embryonic locomotor activities
[[abstract]]Although multiple subtypes of sodium channels are expressed in most neurons, the specific contributions of the individual sodium channels remain to be studied. The role of zebrafish Nav1.6 sodium channels in the embryonic locomotor movements has been investigated by the antisense morpholino (MO) knockdown. MO1 and MO2 are targeted at the regions surrounding the translation start site of zebrafish Nav1.6 mRNA. MO3 is targeted at the RNA splicing donor site of exon 2. The correctly spliced Nav1.6 mRNA of MO3 morphants is 6% relative to that of the wild-type embryos. Nav1.6-targeted MO1, MO2 and MO3 attenuate the spontaneous contraction, tactile sensitivity, and swimming in comparison with a scrambled morpholino and mutated MO3 morpholino. No significant defect is observed in the development of slow muscles, the axonal projection of primary motoneurons, and neuromuscular junctions. The movement impairments caused by MO1, MO2, and MO3 suggest that the function of Nav1.6 sodium channels is essential on the normal early embryonic locomotor activities.[[notice]]補正完畢[[journaltype]]國
The LUX Prototype Detector: Heat Exchanger Development
The LUX (Large Underground Xenon) detector is a two-phase xenon Time
Projection Chamber (TPC) designed to search for WIMP-nucleon dark matter
interactions. As with all noble element detectors, continuous purification of
the detector medium is essential to produce a large (1ms) electron lifetime;
this is necessary for efficient measurement of the electron signal which in
turn is essential for achieving robust discrimination of signal from background
events. In this paper we describe the development of a novel purification
system deployed in a prototype detector. The results from the operation of this
prototype indicated heat exchange with an efficiency above 94% up to a flow
rate of 42 slpm, allowing for an electron drift length greater than 1 meter to
be achieved in approximately two days and sustained for the duration of the
testing period.Comment: 12 pages, 9 figure
LUXSim: A Component-Centric Approach to Low-Background Simulations
Geant4 has been used throughout the nuclear and high-energy physics community
to simulate energy depositions in various detectors and materials. These
simulations have mostly been run with a source beam outside the detector. In
the case of low-background physics, however, a primary concern is the effect on
the detector from radioactivity inherent in the detector parts themselves. From
this standpoint, there is no single source or beam, but rather a collection of
sources with potentially complicated spatial extent. LUXSim is a simulation
framework used by the LUX collaboration that takes a component-centric approach
to event generation and recording. A new set of classes allows for multiple
radioactive sources to be set within any number of components at run time, with
the entire collection of sources handled within a single simulation run.
Various levels of information can also be recorded from the individual
components, with these record levels also being set at runtime. This
flexibility in both source generation and information recording is possible
without the need to recompile, reducing the complexity of code management and
the proliferation of versions. Within the code itself, casting geometry objects
within this new set of classes rather than as the default Geant4 classes
automatically extends this flexibility to every individual component. No
additional work is required on the part of the developer, reducing development
time and increasing confidence in the results. We describe the guiding
principles behind LUXSim, detail some of its unique classes and methods, and
give examples of usage.
* Corresponding author, [email protected]: 45 pages, 15 figure
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
- …