29 research outputs found

    First record of Rhabdoceras suessi (Ammonoidea, Late Triassic) from the Transylvanian Triassic Series of the Eastern Carpathians (Romania) and a review of its biochronology, paleobiogeography and paleoecology

    Get PDF
    Abstract The occurrence of the heteromorphic ammonoid Rhabdoceras suessi Hauer, 1860, is recorded for the first time in the Upper Triassic limestone of the Timon-Ciungi olistolith in the Rarău Syncline, Eastern Carpathians. A single specimen of Rhabdoceras suessi co-occurs with Monotis (Monotis) salinaria that constrains its occurrence here to the Upper Norian (Sevatian 1). It is the only known heteromorphic ammonoid in the Upper Triassic of the Romanian Carpathians. Rhabdoceras suessi is a cosmopolitan species widely recorded in low and mid-paleolatitude faunas. It ranges from the Late Norian to the Rhaetian and is suitable for high-resolution worldwide correlations only when it co-occurs with shorter-ranging choristoceratids, monotid bivalves, or the hydrozoan Heterastridium. Formerly considered as the index fossil for the Upper Norian (Sevatian) Suessi Zone, by the latest 1970s this species lost its key biochronologic status among Late Triassic ammonoids, and it generated a controversy in the 1980s concerning the status of the Rhaetian stage. New stratigraphic data from North America and Europe in the subsequent decades resulted in a revised ammonoid biostratigraphy for the uppermost Triassic, the Rhaetian being reinstalled as the topmost stage in the current standard timescale of the Triassic. The geographic distribution of Rhabdoceras is compiled from published worldwide records, and its paleobiogeography and paleoecology are discussed

    First record of Rhabdoceras suessi

    Full text link

    The Neurostimulation Appropriateness Consensus Committee (NACC) Safety Guidelines for the Reduction of Severe Neurological Injury

    No full text
    Neurostimulation involves the implantation of devices to stimulate the brain, spinal cord, or peripheral or cranial nerves for the purpose of modulating the neural activity of the targeted structures to achieve specific therapeutic effects. Surgical placement of neurostimulation devices is associated with risks of neurologic injury, as well as possible sequelae from the local or systemic effects of the intervention. The goal of the Neurostimulation Appropriateness Consensus Committee (NACC) is to improve the safety of neurostimulation. The International Neuromodulation Society (INS) is dedicated to improving neurostimulation efficacy and patient safety. Over the past two decades the INS has established a process to use best evidence to improve care. This article updates work published by the NACC in 2014. NACC authors were chosen based on nomination to the INS executive board and were selected based on publications, academic acumen, international impact, and diversity. In areas in which evidence was lacking, the NACC used expert opinion to reach consensus. The INS has developed recommendations that when properly utilized should improve patient safety and reduce the risk of injury and associated complications with implantable devices. On behalf of INS, the NACC has published recommendations intended to reduce the risk of neurological injuries and complications while implanting stimulators
    corecore