109 research outputs found

    Spatial gradients in the cosmological constant

    Get PDF
    It is possible that there may be differences in the fundamental physical parameters from one side of the observed universe to the other. I show that the cosmological constant is likely to be the most sensitive of the physical parameters to possible spatial variation, because a small variation in any of the other parameters produces a huge variation of the cosmological constant. It therefore provides a very powerful {\em indirect} evidence against spatial gradients or temporal variation in the other fundamental physical parameters, at least 40 orders of magnitude more powerful than direct experimental constraints. Moreover, a gradient may potentially appear in theories where the variability of the cosmological constant is connected to an anthropic selection mechanism, invoked to explain the smallness of this parameter. In the Hubble damping mechanism for anthropic selection, I calculate the possible gradient. While this mechanism demonstrates the existence of this effect, it is too small to be seen experimentally, except possibly if inflation happens around the Planck scale.Comment: 12 page

    Decreasing physical and verbal aggression in a brain injured nursing home resident

    Get PDF
    Following a traumatic brain injury, patients often suffer a series of psychological and psychiatric sequalae. This study presents the case of Mr. K, a 52-year-old brain-injured nursing home resident who exhibited problematic physical aggression and verbal abuse toward staff and residents. His problem behaviors were intertwined with an ethical issue involving a heterosexual relationship with another resident who also was brain injured. Following a functional assessment of antecedents and consequences, a differential reinforcement of other behavior (DRO) schedule was implemented. Specifically, the resident was rewarded with short-term and long-term reinforcers following periods of time during which behaviors other than the target behavior were emitted. Although the behavior plan was successful, it resulted in a more noticeable decrease in physically aggressive behaviors than verbally abusive behaviors. Implications include increasing awareness of use of behavior plans in nursing homes and of ethical and behavioral issues associated with sexuality among nursing home residents

    Supergravity Inflation on the Brane

    Get PDF
    We study N=1 Supergravity inflation in the context of the braneworld scenario. Particular attention is paid to the problem of the onset of inflation at sub-Planckian field values and the ensued inflationary observables. We find that the so-called η\eta-problem encountered in supergravity inspired inflationary models can be solved in the context of the braneworld scenario, for some range of the parameters involved. Furthermore, we obtain an upper bound on the scale of the fifth dimension, M_5 \lsim 10^{-3} M_P, in case the inflationary potential is quadratic in the inflaton field, ϕ\phi. If the inflationary potential is cubic in ϕ\phi, consistency with observational data requires that M59.2×104MPM_5 \simeq 9.2 \times 10^{-4} M_P.Comment: 6 pages, 1 figure, to appear in Phys. Rev.

    Oscillations During Inflation and the Cosmological Density Perturbations

    Get PDF
    Adiabatic (curvature) perturbations are produced during a period of cosmological inflation that is driven by a single scalar field, the inflaton. On particle physics grounds -- though -- it is natural to expect that this scalar field is coupled to other scalar degrees of freedom. This gives rise to oscillations between the perturbation of the inflaton field and the perturbations of the other scalar degrees of freedom, similar to the phenomenon of neutrino oscillations. Since the degree of the mixing is governed by the squared mass matrix of the scalar fields, the oscillations can occur even if the energy density of the extra scalar fields is much smaller than the energy density of the inflaton field. The probability of oscillation is resonantly amplified when perturbations cross the horizon and the perturbations in the inflaton field may disappear at horizon crossing giving rise to perturbations in scalar fields other than the inflaton. Adiabatic and isocurvature perturbations are inevitably correlated at the end of inflation and we provide a simple expression for the cross-correlation in terms of the slow-roll parameters.Comment: 23 pages, uses LaTeX, added few reference

    Extended Fermion Representation of Multi-Charge 1/2-BPS Operators in AdS/CFT -- Towards Field Theory of D-Branes --

    Full text link
    We extend the fermion representation of single-charge 1/2-BPS operators in the four-dimensional N=4 super Yang-Mills theory to general (multi-charge) 1/2-BPS operators such that all six directions of scalar fields play roles on an equal footing. This enables us to construct a field-theorectic representation for a second-quantized system of spherical D3-branes in the 1/2-BPS sector. The Fock space of D3-branes is characterized by a novel exclusion principle (called `Dexclusion' principle), and also by a nonlocality which is consistent with the spacetime uncertainty relation. The Dexclusion principle is realized by composites of two operators, obeying the usual canonical anticommutation relation and the Cuntz algebra, respectively. The nonlocality appears as a consequence of a superselction rule associated with a symmetry which is related to the scale invariance of the super Yang-Mills theory. The entropy of the so-called superstars, with multiple charges, which have been proposed to be geometries corresponding to the condensation of giant gravitons is discussed from our viewpoint and is argued to be consistent with the Dexclusion principle. Our construction may be regarded as a first step towards a possible new framework of general D-brane field theory.Comment: 43 pages, 4 figures; version 2, corrected typos and added reference

    Evidence against or for topological defects in the BOOMERanG data ?

    Full text link
    The recently released BOOMERanG data was taken as ``contradicting topological defect predictions''. We show that such a statement is partly misleading. Indeed, the presence of a series of acoustic peaks is perfectly compatible with a non-negligible topological defects contribution. In such a mixed perturbation model (inflation and topological defects) for the source of primordial fluctuations, the natural prediction is a slightly lower amplitude for the Doppler peaks, a feature shared by many other purely inflationary models. Thus, for the moment, it seems difficult to rule out these models with the current data.Comment: 4 pages, 1 figure. Some changes following extraordinarily slow referee Reports and new data. Main results unchanged (sorry

    WMAP and Supergravity Inflationary Models

    Full text link
    We study a class of N=1 Supergravity inflationary models in which the evolution of the inflaton dynamics is controlled by a single power in the inflaton field at the point where the observed density fluctuations are produced, in the context of the braneworld scenario, in light of WMAP results. In particular, we find that the bounds on the spectral index and its running constrain the parameter space both for models where the inflationary potential is dominated by a quadratic term and by a cubic term in the inflaton field. We also find that αs>0\alpha_s>0 is required for the quadratic model whereas αs<0\alpha_s<0 for the cubic model. Moreover, we have determined an upper bound on the five-dimensional Planck scale, M_5 \lsim 0.019 M, for the quadratic model. On the other hand, a running spectral index with ns>1n_s>1 on large scales and ns<1n_s<1 on small scales is not possible in either case.Comment: 7 pages, 4 eps figures, references corrected, version to appear in Phys. Rev.

    Bayesian multinomial probit modeling of daily windows of susceptibility for maternal PM2.5 exposure and congenital heart defects

    Get PDF
    Epidemiologic studies suggest that maternal ambient air pollution exposure during critical periods of pregnancy is associated with adverse effects on fetal development. In this work, we introduce new methodology for identifying critical periods of development during post-conception gestational weeks 2–8 where elevated exposure to particulate matter less than 2.5 µm (PM2.5) adversely impacts development of the heart. Past studies have focused on highly aggregated temporal levels of exposure during the pregnancy and have failed to account for anatomical similarities between the considered congenital heart defects. We introduce a multinomial probit model in the Bayesian setting that allows for joint identification of susceptible daily periods during pregnancy for 12 types of congenital heart defects with respect to maternal PM2.5 exposure. We apply the model to a dataset of mothers from the National Birth Defect Prevention Study where daily PM2.5 exposures from post-conception gestational weeks 2–8 are assigned using predictions from the downscaler pollution model. This approach is compared with two aggregated exposure models that define exposure as the average value over post-conception gestational weeks 2–8 and the average over individual weeks, respectively. Results suggest an association between increased PM2.5 exposure on post-conception gestational day 53 with the development of pulmonary valve stenosis and exposures during days 50 and 51 with tetralogy of Fallot. Significant associations are masked when using the aggregated exposure models. Simulation study results suggest that the findings are robust to multiple sources of error. The general form of the model allows for different exposures and health outcomes to be considered in future applications

    Associations between PM2.5 and risk of preterm birth among liveborn infants

    Get PDF
    Purpose: Studies suggest exposure to ambient particulate matter less than 2.5 μg/m3 in aerodynamic diameter (PM2.5) may be associated with preterm birth (PTB), but few have evaluated how this is modified by ambient temperature. We investigated the relationship between PM2.5 exposure during pregnancy and PTB in infants without birth defects (1999–2006) and enrolled in the National Birth Defects Prevention Study and how it is modified by concurrent temperature. Methods: PTB was defined as spontaneous or iatrogenic delivery before 37 weeks. Exposure was assigned using inverse distance weighting with up to four monitors within 50 kilometers of maternal residence. To account for state-level variations, a Bayesian two-level hierarchal model was developed. Results: PTB was associated with PM2.5 during the third and fourth months of pregnancy (range: (odds ratio (95% confidence interval) = 1.00 (0.35, 2.15) to 1.49 (0.82, 2.68) and 1.31 (0.56, 2.91) to 1.62 (0.7, 3.32), respectively); no week of exposure conveyed greater risk. Temperature may modify this relationship; higher local average temperatures during pregnancy yielded stronger positive relationships between PM2.5 and PTB compared to nonstratified results. Conclusions: Results add to literature on associations between PM2.5 and PTB, underscoring the importance of considering co-exposures when estimating effects of PM2.5 exposure during pregnancy

    Maternal exposure to outdoor air pollution and congenital limb deficiencies in the National Birth Defects Prevention Study

    Get PDF
    Background: Congenital limb deficiencies (CLDs) are a relatively common group of birth defects whose etiology is mostly unknown. Recent studies suggest maternal air pollution exposure as a potential risk factor. Aim: To investigate the relationship between ambient air pollution exposure during early pregnancy and offspring CLDs. Methods: The study population was identified from the National Birth Defects Prevention Study, a population-based multi-center case-control study, and consisted of 615 CLD cases and 5,701 controls with due dates during 1997 through 2006. Daily averages and/or maxima of six criteria air pollutants (particulate matter &lt;2.5 μm [PM2.5], particulate matter &lt;10 μm [PM10], nitrogen dioxide [NO2], sulfur dioxide [SO2], carbon monoxide [CO], and ozone [O3]) were averaged over gestational weeks 2–8, as well as for individual weeks during this period, using data from EPA air monitors nearest to the maternal address. Logistic regression was used to estimate odds ratios (aORs) and 95% confidence intervals (CIs) adjusted for maternal age, race/ethnicity, education, and study center. We estimated aORs for any CLD and CLD subtypes (i.e., transverse, longitudinal, and preaxial). Potential confounding by co-pollutant was assessed by adjusting for one additional air pollutant. Using the single pollutant model, we further investigated effect measure modification by body mass index, cigarette smoking, and folic acid use. Sensitivity analyses were conducted restricting to those with a residence closer to an air monitor. Results: We observed near-null aORs for CLDs per interquartile range (IQR) increase in PM10, PM2.5, and O3. However, weekly averages of the daily average NO2 and SO2, and daily max NO2, SO2, and CO concentrations were associated with increased odds of CLDs. The crude ORs ranged from 1.03 to 1.12 per IQR increase in these air pollution concentrations, and consistently elevated aORs were observed for CO. Stronger associations were observed for SO2 and O3 in subtype analysis (preaxial). In co-pollutant adjusted models, associations with CO remained elevated (aORs: 1.02–1.30); but aORs for SO2 and NO2 became near-null. The aORs for CO remained elevated among mothers who lived within 20 km of an air monitor. The aORs varied by maternal BMI, smoking status, and folic acid use. Conclusion: We observed modest associations between CLDs and air pollution exposures during pregnancy, including CO, SO2, and NO2, though replication through further epidemiologic research is warranted
    corecore