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Abstract

Epidemiologic studies suggest maternal ambient air pollution exposure during critical periods of 

pregnancy is associated with adverse effects on fetal development. In this work, we introduce new 

methodology for identifying critical periods of development during post-conception gestational 

weeks 2–8 where elevated exposure to particulate matter less than 2.5 micrometers (PM2.5) 

adversely impacts development of the heart. Past studies have focused on highly aggregated 

temporal levels of exposure during the pregnancy and have failed to account for anatomical 

Corresponding Author: Joshua L. Warren, Department of Biostatistics, Yale School of Public Health, PO Box 208034 New Haven, 
CT 06520-8034. Phone: (203)785-4188. joshua.warren@yale.edu. 

Supporting information:
Additional supporting information may be found in the online version of this article at the publisher’s web site.

HHS Public Access
Author manuscript
Stat Med. Author manuscript; available in PMC 2017 July 20.

Published in final edited form as:
Stat Med. 2016 July 20; 35(16): 2786–2801. doi:10.1002/sim.6891.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similarities between the considered congenital heart defects (CHDs). We introduce a multinomial 

probit model in the Bayesian setting that allows for joint identification of susceptible daily periods 

during pregnancy for 12 types of CHDs with respect to maternal PM2.5 exposure. We apply the 

model to a dataset of mothers from the National Birth Defect Prevention Study where daily PM2.5 

exposures from post-conception gestational weeks 2–8 are assigned using predictions from the 

downscaler pollution model. This approach is compared to two aggregated exposure models that 

define exposure as the average value over post-conception gestational weeks 2–8 and the average 

over individual weeks respectively. Results suggest an association between increased PM2.5 

exposure on post-conception gestational day 53 with the development of pulmonary valve stenosis 

and exposures during days 50–51 with tetralogy of Fallot. Significant associations are masked 

when using the aggregated exposure models. Simulation study results suggest the findings are 

robust to multiple sources of error. The general form of the model allows for different exposures 

and health outcomes to be considered in future applications.
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Introduction

Congenital heart defects (CHDs), as a group, are the most common type of birth defect, with 

an estimated prevalence of 9 cases per 1,000 livebirths [1]. Previous research has sought to 

determine if CHDs are associated with exposure to fine particulate matter less than 2.5 

micrometers in diameter (PM2.5) during gestation [2–7]. Evidence of a relationship has been 

inconsistent across studies, potentially due to differences in how studies classify CHD cases 

and measure/define exposure. CHDs include a causally heterogeneous group of morphologic 

anomalies involving potentially numerous developmental pathways and pathogenetic 

mechanisms. Multiple classification and aggregation schemes exist to ensure consistency for 

varying surveillance and research purposes, as well as to address issues of small sample size 

of individual defects through aggregation into broader defect-grouping categories. The use 

of overly aggregated or incorrect groupings as outcomes in epidemiologic studies, however, 

may bias effect estimates, potentially masking relevant etiologic relationships [8].

Failing to account for exposure timing may also mask associations. Typical cardiac 

development involves a coordinated series of precise steps, beginning with the migration of 

cells to form the endocardial tubes and culminating in the eighth week post-conception with 

the septation of the ventricles and outflow tracts [9]. Insults in early parts of this window of 

cardiac development may have different effects on development and ultimate cardiac 

anatomy than those toward the end of the window when the structures are almost completely 

formed. This concept is supported by previous work that examined maternal exposure to 

PM2.5 and CHDs, finding that some associations were obscured when exposure over the 

entire window of cardiac development was averaged, instead of simultaneously examining 

individual weeks of exposure during post-conception weeks 2–8 [5].
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Similar findings of variability within the window of cardiac development were reported in a 

recent study [10]. In that study, a novel model utilizing a Bayesian hierarchical framework 

was developed to investigate potential windows of vulnerability to air pollutants using 

weekly averages during cardiac development. The model improved estimation of critical 

windows by allowing for non-Gaussian and nonstationary spatial-temporal pollution 

associations, resulting in increased modeling flexibility. Using weekly averages, however, 

limited the number of exposure data points and the model's ability to estimate more precise 

windows during the period of cardiac development.

In this paper, we introduce new methodology in the Bayesian setting to explore a finer 

temporal resolution of pollutant exposure by including daily as opposed to weekly averages. 

Exploring daily averages should provide more detailed insight into critical pregnancy 

periods that may be overlooked when higher levels of aggregation are considered, 

particularly for congenital heart defects for which the exposure period of interest is relatively 

short. The newly developed model is also able to jointly analyze windows of susceptibility 

for 12 types of CHDs while allowing for potential similarities in the windows across the 

broader defect-groupings created from a detailed defect classification scheme. Accounting 

for these shared characteristics within defect-groupings could improve both estimation and 

precision of the critical periods for individual defects. The previous study [10] included only 

three types of CHDs and did not incorporate the broader defect-groupings information into 

the modeling. We also extend the previous work by allowing for multinomial responses as 

opposed to conditionally independent binary responses.

This analysis was carried out using data from the National Birth Defects Prevention Study 

(NBDPS), a national population-based case-control study of birth defects, and PM2.5 

exposure estimates from the Environmental Protection Agency's (EPA) downscaler 

Community Multiscale Air Quality (CMAQ) model, a spatiotemporal pollutant model that 

provides daily estimates of PM2.5 by combining numerical output from the CMAQ chemical 

model with available ambient monitoring data [11].

While our application of the introduced methodology is focused on daily air pollution 

exposure and CHD development, we note that the general formulation of the model allows 

for any type of time-varying exposure and multivariate health outcome of interest. Example 

exposures include pesticides, contaminated drinking water, pollen, secondhand smoke, and 

other air pollutants. Alternative reproductive health outcomes such as preterm birth and low 

birth weight could be considered as well as more general acute responses including allergic 

reactions, respiratory events, and cardiovascular events. Use of finer levels of temporal 

aggregation for the exposure is also possible, if appropriate, as is the number of categories of 

the health response. Introducing the model for multinomial responses will also allow for 

critical window identification in data settings where the assumption of conditionally 

independent binary responses may be inappropriate.

In Section 2, we describe the data used in the study. The general form of the statistical model 

is presented in Section 3 and we apply the model to our data in Section 4. A simulation 

study is presented in Section 5 to assess the robustness of our findings to different sources of 

misclassification error. We close in Section 6 with discussion.
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Data description

Study population

We utilize data from the NBDPS from years 2001–2006. The methods of the NBDPS have 

been described previously [12]. Cases are livebirths, stillbirths greater than 20 weeks 

gestation or at least 500 grams, and elective terminations where available, that were 

identified by the birth defects monitoring programs in nine sites within the United States 

(US) (Arkansas, metropolitan Atlanta, California, Iowa, Massachusetts, New York, North 

Carolina, Texas, Utah). A tenth site, New Jersey, was not included in our analysis as 

geocoded residential information was unavailable. Cases with CHDs of known cause, such 

as chromosome abnormalities and single gene syndromes, were excluded per NBDPS 

protocol. Controls are livebirths without any known birth defects, identified through vital or 

hospital records, depending upon site-specific protocols. We limit our population to women 

who lived in geographic locations where downscaler CMAQ predictions were available 

during the study period. This led to the exclusion of women from the California and Utah 

study centers and women from the Texas center who conceived in 2001. Case homogeneity 

is an important component in understanding human teratogenesis [8,13] and can potentially 

improve risk estimation [14] in epidemiologic studies. In order to create homogeneous case 

groups and avoid confusing causes related to single versus multiple defects, we included 

cases with only a single CHD and no major, reportable extra-cardiac defects present. We 

also exclude women who had pregestational diabetes because of the established strong 

association with CHDs in offspring [15]. Women with missing covariate information are 

also excluded (n = 78), resulting in a total sample size of 4,727. See Table 1 for a breakdown 

of sample size by specific CHD.

As part of the NBDPS protocol, medical records of CHD cases were reviewed by a team of 

clinicians with training in pediatric cardiology using standardized protocols and assigned a 

single individual defect and a corresponding broader defect-grouping based on anatomical 

and developmental considerations [8]. The six broader defect-groupings included in this 

analysis, along with the individual defects that comprise them are as follows:

1. Left ventricular outflow tract obstructions (LVOTO) including

• coarctation of the aorta (COA),

• hypoplastic left heart syndrome (HLHS), and

• aortic stenosis (AS);

2. Right ventricular outflow tract obstructions (RVOTO) including

• pulmonary valve stenosis (PVS) and

• atresia (pulmonary and tricuspid atresia);

3. Conotruncal defects including

• dextro-transposition of the great arteries (d-TGA),

• tetralogy of Fallot (TOF), and
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• other conotruncal defects (OC) (common truncus, interrupted aortic arch-

type B and type not otherwise specified, double outlet right ventricle 

whether or not associated with transposition of the great arteries, and 

conoventricular septal defects);

4. Septal defects including

• atrial septal defects (ASD) and

• perimembranous ventricular septal defects (VSDpm);

5. Atrioventricular septal defect (AVSD); and

6. Anomalous pulmonary venous return (APVR) (includes total APVR and partial 

APVR).

Exposure assignment

As part of the NBDPS protocol, women reported their complete residential history during 

pregnancy. All maternal residences were geocoded centrally by the Agency for Toxic 

Substances and Disease Registry to maintain consistency between study sites. We use each 

woman's geocoded address for the first eight weeks of pregnancy (post-conception) to assign 

exposure. Per NBDPS protocol, each woman’s estimated date of conception is calculated 

using the estimated date of delivery, that is, the due date that the woman received from her 

physician and reported during the study interview. That estimated date of conception is used 

to assign daily exposures for gestational weeks 2–8. For women who had more than one 

address during that period, each address is used to assign exposure during the time the 

woman resided at that location. Exposure is calculated using output from EPA's downscaler 

CMAQ model. Described previously [11], this model scales gridded CMAQ output down to 

point-level monitoring data and combines the two using linear regression with spatially- and 

temporally-varying bias coefficients. It provides bias-corrected, daily point predictions of 

24-hour PM2.5 at the centroid of each census-tract in the US. Previous research using the 

ozone estimates from this exposure model suggests that results obtained when using the 

downscaler CMAQ model are similar to those obtained when using monitoring data but have 

greater precision due to the inclusion of populations that do not have available monitoring 

data [16]. We compile exposure data for the entire eastern US for the years 2001–2006. Each 

woman is matched to the closest census-tract centroid, and we then obtain daily averages for 

post-conception gestational weeks 2 through 8 to correspond with the critical period of 

cardiac development. For numerical stability during model fitting, each gestational day 

average exposure is standardized across all women to have a mean of zero and standard 

deviation of one.

Methods

Statistical model

We model the multinomial vector of possible CHD outcomes from each birth using a 

multinomial probit regression model such that  where pi = (pi1, 

…, piJ, pic)T, piJ is the probability that birth i results in CHD j, pic is the probability that birth 
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i does not result in one of the included CHDs (control), and J is the number of CHDs 

considered in the study. In our application, J = 12, but in general J ≥ 1. Yi = (Yi1, …, YiJ, 
Yic)T where Yij = 1 and Yik = 0, k ≠ j when birth i results in CHD j. We work with 

multinomial responses of size one since each birth can only result in a single CHD or control 

outcome such that  for all i. We require the set of probabilities for each 

birth to sum to one in order to have a valid model and note that these probabilities do not 

represent prevalences due to the case-control design of the study. As a result, the 

multinomial probit model is most naturally introduced through the use of latent variables 

which are jointly defined and lead to the satisfaction of this requirement. Previous research 

showed that in the Bayesian setting, the prospective logistic regression model inference is 

equivalent to the corresponding retrospective inference under certain assumptions regarding 

the prior distribution of the log odds for a diseased individual with baseline exposure and for 

the prior distribution of exposure probabilities for the control group [17]. This result 

suggests that the Bayesian analysis of case-control studies may be carried out using a 

prospective model, similar to the frequentist setting.

For woman i, we introduce the set of latent variables wi = (wi1, …, wiJ)T such that

where xi is a vector of potential confounders and individual-level covariates, βj is the vector 

of regression coefficients specific to CHD j that relates the covariates to the latent response, 

z{si, t(k)i} is the kth post-conception gestational day average of downscaled PM2.5 exposure 

(standardized at each gestational day across all women) at the census tract centroid closest to 

maternal residence location si during calendar period t(k)t, ηg(j) (j, k) is the pollution 

parameter specific to post-conception gestational day k and defect j belonging to broader 

defect-grouping g(j), and . Specifying  ensures that the introduced 

regression parameters and daily risk parameters are well identified [18]. The t(k)i function 

maps an input gestational day to the appropriate calendar date of gestation for woman i since 

women in the study were pregnant during different calendar periods. Because we are 

interested in daily exposures during post-conception gestational weeks 2–8, we select k0 = 8 

and K = 56 in our application of the model.

The latent variables are used to directly define the observed outcomes such that Yik = 1 

(CHD k is observed) if max{wi} = wik > 0 and Yic = 1 (control is observed) if max{wi} < 0. 

This leads to pik = P(max{wi} = wik > 0) for k = 1, …, J and pic = P(max{wi} = wik < 0), 

where P(A) represents the probability of event A occurring. Therefore, increasing the value 

of the latent variable associated with a particular CHD directly increases the probability that 

the respective outcome is observed. Identifying factors that significantly increase/decrease 

the latent responses provides insight into the associations with the respective CHDs.

The general form of the model allows for the possibility that the included confounders are 

associated with each CHD differently through the use of CHD-specific parameter vectors βj, 
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j = 1, …, J. Based on directed acyclic graph analysis, all models are adjusted for the 

following confounders: maternal age as a continuous variable; maternal race/ethnicity using 

self-reported categories of White non-Latina, Black non-Latina, or other; maternal education 

categorized as less than high school, high school diploma/equivalency and/or some college 

or trade school, and college graduate or advanced degree; maternal tobacco use during the 

first month of pregnancy categorized dichotomously as any/none; and maternal alcohol 

consumption during the first three months of pregnancy categorized dichotomously as any/

none. Maternal age was coded as a single, continuous variable as previous research has 

shown that the prevalence of isolated CHDs increases with greater maternal age [19]. 

Models are also adjusted for each center's ratio of septal defects to total CHDs in order to 

account for potential differences in case ascertainment by study center because identifying 

septal defects is often dependent upon the method of case ascertainment [20].

In order to identify daily critical windows of importance for each CHD, we allow for daily 

and CHD-specific pollution parameters in the model formulation through use of ηg(j)(j, k). 

These parameters capture the association between the average amount of pollution exposure 

during post-conception gestational day k and CHD j within broader defect-grouping g(j). In 

total, we introduce J sets of these parameters, ηg(j)(j), j = 1, …, J, one for each CHD such 

that ηg(j)(j) = {ηg(j)(j, k0), …, ηg(j)(j, K)}T. Using the six previously established broader 

defect-groupings, we are able to place each individual CHD into a larger, anatomically-

based defect category such that g(j) ∈ {1, …, G} for all j where G = 6 in our application. 

These groupings, given in the Study Population Subsection, allow us to introduce prior 

distributions for the model parameters that account for the possibility that associations 

between PM2.5 exposure and CHD development are similar within a broader grouping. We 

also allow for the possibility that the daily associations within a single CHD are similar due 

to proximity in time. Adding this temporal correlation structure also helps to account for the 

multicollinearity introduced by using a finer time scale as exposures closer in time are likely 

highly correlated.

Prior information/induced covariance

The model specification is completed by assigning prior distributions to the introduced 

model parameters. Use of the multinomial probit model results in semi-conjugacy and 

therefore allows for more efficient estimation of the introduced parameters. The vectors of 

pollution parameters within a single broader CHD grouping are modeled jointly and 

assigned a multivariate normal prior distribution which allows for temporal correlation 

between the daily association parameters and a cross-covariance between the parameters of 

the included CHDs. For example, for broader CHD grouping 1 (g(j) = 1) we specify a prior 

distribution for {η1(1)T, η1(2)T, η1(3)T}T while for grouping 2 we assign an independent 

prior distribution to {η2(4)T, η2(5)T}T. We refer to these group-specific vectors as η(g), for g 
∈ {1, …, G}. The selected prior distributions are given as 

 where ⊗ represents the Kronecker product and Ω(g) 

is the cross-covariance matrix for broader grouping g. This ng by ng matrix describes the 

covariance between association parameters from the individual CHDs within the same 

broader grouping where ng is the number of CHDs in broader grouping g. We assume a very 

general structure for this covariance, allowing for all possible levels of correlation (positive 
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and negative) between each of the daily association parameters connected with different 

CHDs. This is achieved by assigning independent inverse Wishart prior distributions to Ω(g) 

with scale matrix equal to the ng by ng identity matrix and degrees of freedom equal to ng. 

These vague yet proper prior distributions allow the data to drive the resulting inference.

Within a single CHD, we allow for the possibility that association parameters closer in time 

are more highly correlated through the use of Σ(ϕg). The entries of Σ(ϕg) are given as 

Σ(ϕg)k,k′ = Corr{ηg(j, k), ηg(j, k′)} = exp{−ϕg|k − k′|} where ϕg > 0 is the parameter specific 

to broader grouping g that controls the level of temporal correlation between the association 

parameters. Large values of ϕg suggest that association parameters close in time are not 

highly correlated while small values suggest the opposite. We allow for this parameter to 

vary based on the grouping for increased flexibility and generality. As the number of days 

increases between two parameters, the correlation decreases. This introduced prior 

distribution leads to a general covariance structure between the association parameters such 

that

This structure encourages sharing of information not only across pregnancy days but also 

across the individual defects within a broader CHD grouping. However, if this sharing of 

information is not warranted, the model allows for that possibility as well.

The parameters that control the level of temporal correlation are given independent uniform 

prior distributions such that . These parameters and the cross-covariance 

parameters are well identified given the identifiability of the daily risk parameters. The 

values of a and b are chosen so that the prior correlation between the daily association 

parameters from any two time periods is allowed to vary between 0.001 and 0.999. This 

allows the amount of smoothness exhibited between the association parameters to be 

determined by the data rather than an informative prior distribution. Using the prior 

correlation function between the daily risk parameters from the same defect, Corr{ηg(j, k), 

ηg(j, k′)} = exp{−ϕg|k − k′|}, we found the value of ϕg such that exp{−ϕg|k − k′|} = 0.001 

when |k − k′| = 1 (smallest difference between two different daily parameters). Solving for 

ϕg, we obtain the upper bound b = 6.9. For the lower limit of the uniform prior, we found the 

value of ϕg such that exp{−ϕg|k − k′|} = 0.999 when |k − k′| = 48 (largest difference between 

two different daily parameters). Solving for ϕg, we obtain the lower bound a = 2.1 * 10−5. 

The regression parameters associated with the individual-level covariates are given 

independent and identically distributed prior distributions such that  where 

is fixed at a large value (1010), resulting in vague yet proper prior distributions for these 

parameters.

Data application

We apply the introduced model to the combined NBDPS and downscaler PM2.5 exposure 

dataset. All results are based on a total of 280,000 samples from the posterior distribution of 
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the model parameters (140,000 samples each from two chains with different starting values) 

after a burn-in period of 10,000 iterations for each chain. All models were fit using R 

statistical software [21] and the model fitting details are provided in Appendix A. Batch 

mean Monte Carlo (MC) standard errors [22] were calculated for all presented posterior 

means in order to determine the appropriate number of posterior samples to obtain during 

the MCMC sampling. The MC standard errors for the daily association parameters presented 

in Figures 1–3 and Supplemental Material, Figure S6–Figure S8 range from 0.00002 to 

0.00026 with a median value of 0.00005. Convergence was determined based on visual 

inspection of the trace plots from all model parameters as well as the calculation of Gelman 

and Rubin's convergence diagnostic, the potential scale reduction factor, for each model 

parameter [23–24]. The average, median, minimum, and maximum values for the estimated 

potential scale reduction factor across all parameters was 1.00, 1.00, 1.00, and 1.06 

respectively. Recall that large values of this metric for a parameter indicate nonconvergence 

and values near one indicate that each chain has reached its target distribution. Boxplots of 

the effective sample sizes for each group of model parameters are displayed in Supplemental 

Material, Figure S1. The effective sample sizes ranged from 1,445 to 89,084 across all 

parameters. Supplemental Material, Figure S2 displays trace plots for selected daily 

association parameters, ηg(j)(j, k), one from each defect. For PVS and TOF, days 53 and 51 

respectively are displayed since these are identified as having 95% credible intervals (CIs) 

that do not include zero. For the remaining defects, the day was chosen at random. These 

presented plots are typical of other daily association parameter trace plots. Supplemental 

Material, Figures S3–S4 show additional trace plots for all ϕg parameters and for all 

diagonal elements of each Ω(g) matrix, respectively. Posterior means and posterior standard 

deviations are also presented.

The main parameters of interest, ηg(j)(j, k), capture the association between the average 

amount of pollution exposure during post-conception gestational day k and CHD j within 

broader defect-grouping g(j). Because the PM2.5 exposure at each gestational day is 

standardized across all women, the interpretation of a single parameter is that a one standard 

deviation increase of average PM2.5 exposure during post-conception gestational day k 
increases the probability of developing CHD j by increasing the respective latent variable by 

ηg(j)(j, k). Supplemental Material, Figure S5 displays the mean and standard deviation of 

PM2.5 exposures averaged across all women for each post-conception gestational day.

Table 1 displays the characteristics of our study population by specific CHD/control status. 

Figures 1–3 and Supplemental Material, Figure S6–Figure S8 display graphical results from 

the newly introduced model that describes the association between PM2.5 exposure during 

specific cardiac development days and the development of each included CHD. Each figure 

represents a broader CHD grouping. For each daily exposure window during post-

conception gestational weeks 2–8, posterior means and 95% CIs are plotted.

Based on these results, we now have increased insight regarding PM2.5's impact on CHD 

development during specific periods of pregnancy. Recall that an increase in the latent 

variable directly increases the probability that the respective CHD is observed since the 

maximum latent variable (larger than zero) for an individual defines the outcome such that 

Yik = 1 if max{wi} = wik > 0. In particular, in the RVOTO grouping, PVS (Figure 1A) is 
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shown to be positively associated with PM2.5 exposure experienced during the end of week 8 

of pregnancy (post-conception gestational day 53). This suggests that an increase of 6.51 

micrograms per cubic meter (µg/m3) (1 standard deviation) of average PM2.5 exposure 

during post-conception gestational day 53 significantly increases the probability of 

developing PVS by increasing the respective latent variable by 0.0178 (95% CI 0.0011, 

0.0374). For reference, the average daily exposure for the included women across all days 

was 12.30 µg/m3. Also, in the conotruncals grouping, TOF (Figure 2B) is shown to be 

positively associated with PM2.5 exposure during the early part of pregnancy week 8 (post-

conception gestational days 50–51). This suggests that an increase of 6.44 and 6.46 µg/m3 of 

average PM2.5 exposure during post-conception gestational days 50 and 51 respectively, 

significantly increases the probability of developing TOF by increasing the respective latent 

variable by 0.0154 (95% CI 0.0001, 0.0330) and 0.0159 (95% CI 0.0005, 0.0336). The 

largest estimated association parameter is observed for AVSD (Figure 3) at post-conception 

gestational day fourteen. A 6.47 µg/m3 increase in PM2.5 exposure during this day leads to 

an increase in the latent variable of 0.0239 (95% CI −0.0052, 0.0657). The 95% CI for this 

parameter includes zero largely due to the small sample size observed for the AVSD 

outcome (38 cases). This is the smallest sample size of any CHD included in the analysis. 

The results also suggest that averaging PM2.5 exposure over weeks 2–8 may be less 

informative since a majority of the timeframe results in a null association for each of the 

defects. Susceptible windows of importance may be missed due to averaging in this way.

The cross-covariance results within each broader defect-grouping suggest that the individual 

CHDs generally have little correlation in terms of the association with PM2.5 exposure. For 

the LVOTO grouping, the median posterior correlation (and posterior standard deviation) 

between COA and HLHS is 0.041 (0.351), between COA and AS is 0.046 (0.381), and 

between HLHS and AS is 0.025 (0.393). For the RVOTO grouping, the correlation between 

PVS and atresia is 0.073 (0.381). The highest correlation is estimated in the conotruncal 

grouping, where the correlation between d-TGA and OC is 0.123 (0.379), between d-TGA 

and TOF is −0.011 (0.364), and between TOF and OC is −0.060 (0.372). The correlation 

between ASD and VSDpm of the septal group is −0.011 (0.361). While posterior 

correlations between daily risk parameters from different CHDs within the same major 

grouping are low, the correlation between daily risk parameters from the same CHD are 

close to one even for large daily differences (|k − k′|). Similar levels of temporal correlation 

were observed in previous susceptible window research [16,25].

Model comparisons

In order to explore the impact of considering daily pollution exposure averages across the 

entire post-conception gestational weeks 2–8, we also fit a standard pollution exposure and 

CHD development model (Model 2) and a model with weekly pollution exposure averages 

(Model 3). For Model 2, we once again assume a multinomial probit model form as in the 

newly introduced model (Model 1). However, instead of introducing separate daily pollution 

exposure parameters as in Model 1, we only include the complete weeks 2–8 pollution 

average as a single predictor. The latent variables are defined as 

where  represents the week 2–8 PM2.5 average at the census 
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tract centroid closest to location si during calendar period t(8)i, …, t(56)i specific to woman 

i's dates of pregnancy. θj represents the pollution association parameter associated with CHD 

j. Model 3 has similar likelihood form and prior specifications as Model 1 but uses weekly 

pollution exposure averages (weeks 2–8) instead of daily averages. Models 2–3 are also fit in 

the Bayesian setting to allow for direct comparison with Model 1.

The posterior inference from Model 2 for the pollution parameters (θj) is shown in Table 2. 

None of the CHD-specific parameter estimates are significantly associated with an increase/

decrease in the likelihood of developing any of the considered CHDs. The results observed 

using Model 1 are missed when an aggregated pollution exposure is used instead.

The posterior inference from Model 3 is shown in Supplemental Material, Figures S9–S14. 

The weekly model results suggest only a single critical window during the pregnancy for 

any of the defects. This window is seen for pulmonary valve stenosis during post-conception 

gestational week 8 where the weekly risk parameter has a posterior mean estimate of 0.068 

(95% CI 0.003, 0.143). This finding is in agreement with our results from Model 1 where 

day 53 during week 8 was identified. However, we have gained precision in estimating these 

critical windows and it appears that the weekly findings are being driven mainly by the 

increased risk seen around day 53. The major benefit of considering daily exposures is seen 

more clearly for the TOF results. In Model 1, we identified days 50–51 as being associated 

with elevated risk due to increased pollution exposure. However, Model 3 is unable to detect 

this effect likely due to averaging over the daily risks. In Figure 2, it is clear that days 52–56 

do not have a clear signal and indicate no association with increased risk. Model 3 averages 

over these days and as a result, doesn’t have the flexibility to identify week 8 as being a 

potential critical window, as the 95% CI now includes zero. Therefore, Model 1 is necessary 

in this setting to properly identify critical windows during the pregnancy.

We formally compare the fits from each model using a previously developed posterior 

predictive model selection technique [26]. Briefly, replicate responses are simulated from the 

posterior predictive distribution (ppd) and a discrepancy function is selected that describes 

the difference between the observed responses and those simulated from the ppd. The 

posterior expectation of the discrepancy metric is estimated using the MCMC posterior 

samples and this value is compared among values from competing models. The model with 

the smallest value is then selected. For non-Gaussian response data, the deviance criterion of 

the likelihood is most often selected as the discrepancy function. Values of this comparison 

metric are estimated to be 6,178.60 (Model 1), 6,185.19 (Model 2), and 6,184.09 (Model 3) 

suggesting that Model 1 may be preferred in terms of posterior predictive model fit. Overall, 

Model 1 appears to provide adequate fit to the data, similar to less complex competing 

models, but is also able to identify critical windows that are not seen using the other 

approaches.

Simulation study

Use of this model requires the ability to assign exposure amounts to each individual during a 

selected timeframe before the health outcome is observed. Often, these exposures and the 

exposure timing are measured with error. We conduct a simulation study in order to 
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determine the impact of uncertainty in gestational age and pollution exposure estimates on 

the resulting model inference. We hypothesize that because this uncertainty affects both 

cases and controls similarly, the daily association parameter estimates will be closer to zero, 

indicating a null association.

We begin by creating a true set of gestational ages and pollution exposures for a population 

of interest. In order to resemble a realistic and therefore meaningful scenario, we use our 

NBDPS sample of births directly and assume that the gestational ages and pollution 

exposures are observed without error. Under this assumption, we then run a reduced version 

of the introduced model for a single defect. We choose to work with TOF due to the signal 

observed during post-conception gestational days 50 and 51 (Figure 2B).

After fitting the model, we obtain the estimated daily association parameters and 95% CIs as 

displayed using the black plotting symbols in each panel of Figure 4. As with the original 

findings, post-conception gestational days 50 and 51 are identified as having 95% CIs that 

do not include zero. In the simulation study, these results are treated as the true model 

inference of interest because we are assuming that gestational age and pollution exposures 

are observed without error. However, in practice we are unable to precisely determine the 

exact personal exposure amount and gestational age for each woman. In order to account for 

this uncertainty, we add error to the true gestational ages and pollution exposures and refit 

the model to estimate the daily association parameters. If the introduced errors have little 

impact on the critical window estimation, we would expect to see (i) similar temporal trends 

in the daily association parameter estimates/CIs and (ii) similar identification of statistically 

significant estimates, when compared to the true (error-free) model inference.

We consider three levels of error each for gestational age and pollution exposure. For 

gestational age, we add an independent, normally distributed error centered at zero with 

variance  to each individual’s gestational age. We then round this new gestational age 

estimate to the nearest day to resemble our observed data. For small, medium, and large 

errors we select , and , respectively. These settings correspond 

to a maximum observed difference between true and displaced gestational age of 3, 7, and 

14 days, respectively.

For the daily pollution exposures, we add independent, normally distributed random errors 

centered at zero with variance  to each daily pollution amount. In order to ensure that 

negative and/or unrealistically large values of exposure are not created, we require that each 

displaced exposure lies between 0 and the largest observed exposure amount by using the 

truncated normal distribution to simulate errors. For small, medium, and large errors we 

select , and , respectively. These settings correspond to an 

observed average correlation between true and displaced pollution exposures across 

individuals of 0.83, 0.54, and 0.09, respectively. These values are selected based on the 

reported correlations in a number of studies investigating the agreement between personal 

and ambient PM2.5 exposures [27]. Displaced daily pollution exposures were then 

standardized as previously described.
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For each setting of the gestational age and pollution exposure errors, we create 100 datasets 

for analysis. This process replicates what is typically done in practice, with the difference 

being we now know the true values associated with the estimates. In total, we consider nine 

settings such that:

• Error Setting 1: Large gestational age error, large pollution exposure error;

• Error Setting 2: Large gestational age error, medium pollution exposure error;

• Error Setting 3: Large gestational age error, small pollution exposure error;

• Error Setting 4: Medium gestational age error, large pollution exposure error;

• Error Setting 5: Medium gestational age error, medium pollution exposure error;

• Error Setting 6: Medium gestational age error, small pollution exposure error;

• Error Setting 7: Small gestational age error, large pollution exposure error;

• Error Setting 8: Small gestational age error, medium pollution exposure error;

• Error Setting 9: Small gestational age error, small pollution exposure error.

Therefore, we analyze 900 datasets in total using the newly developed model and for each 

model fit we collect the posterior mean estimate, 95% CI, and indicator of statistical 

significance (95% CI not covering zero) for each daily association parameter.

In Figure 4, we display the average posterior means and average 95% CIs across all 100 

datasets for four of the error settings (1, 3, 7, 9) along with the error-free results overlaid in 

black (three points representing the posterior mean, lower CI limit, and upper CI limit). 

Results from the remaining error settings are similar and can be seen in the Supplemental 

Material, Figure S15. It is clear that in the case of large pollution exposure uncertainty, the 

posterior means are pulled towards zero as expected and the 95% CIs are longer on average. 

This is true regardless of the amount of gestational age error. For the remaining error 

settings, the estimated posterior means and CIs display a similar temporal trend to the true 

inference while the posterior means are generally pulled closer to zero.

In Figure 5, we display the proportion of times that each daily association parameter is 

identified as having a 95% CI that does not include zero for the same four error settings 

(post-conception pregnancy day on the x-axis). Results from the remaining error settings are 

similar and can be seen in the Supplemental Material, Figure S16. Recall that days 50 and 

51 are identified based on the error-free inference. They are also most often identified in the 

simulation study results. As the amount of error decreases, particularly in pollution 

exposures, the probability that the correct days are identified increases overall. For high 

levels of error, the probability that any day has a 95% CI that doesn’t include zero is very 

low. This can also be seen in the average CIs of Figure 4. These results suggest that error in 

the estimation of gestational age and pollution exposures can mask the correct critical 

windows. The probability of observing a false positive is very low in each error setting and 

decreases as you move away from the true critical windows in each direction, with days 

immediately surrounding the true windows having the highest false positive rates.
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These results suggest that when significant daily association parameters are identified in the 

actual data application, they most likely represent true critical windows or are immediately 

adjacent to a true critical window in the error-free inference that we are unable to observe. 

For very large amounts of error, particularly in the pollution exposures, the resulting 

inference would likely be close to null for all daily association parameters with no 

significant findings. Therefore, identified critical windows in our application of the model 

are likely not the result of misclassification error, either in gestational age or pollution 

concentrations. The unobserved error-free inference and our observed findings likely have 

similar temporal patterns in association across the pregnancy and are likely to be similar to 

the daily association parameters identified as significant in our application.

Discussion

We presented a new model for the identification of vulnerable daily post-conception 

gestational periods where increased exposure to a time-varying covariate is associated with 

increased association for development of specific CHDs. The general form of the model will 

allow different exposures to be considered. In our application, we focused on air pollution 

exposure in the form of PM2.5 and showed that the model allows for the use of more detailed 

temporal information than the standard model, which averages the PM2.5 exposure over 

post-conception gestational weeks 2–8. The standard model does not identify any 

statistically significant association between exposure and any of the included CHDs. 

However, once a finer time scale is considered, critical period associations are identified for 

PVS and TOF during different gestational days. These results suggest that aggregating the 

exposure may mask specific associations.

The cross-covariance results suggest that there is a lack of general sharing of information 

between the pollution parameters from different CHDs in the same broader grouping. Basing 

the groupings on anatomical similarities may not be informative for air pollution and birth 

defect epidemiology and analyzing the groupings together, as opposed to the individual 

defects, appears to be inappropriate. Future work could determine if alternate groupings are 

more informative in this setting and offer further insight into the exhibited temporal patterns. 

The level of similarity may also change when different time-varying exposures are 

considered.

Previous epidemiologic studies that only examined a single average of PM2.5 exposure over 

the entire window of cardiac development did not find any elevated effect measures between 

pollutant exposure and individual CHDs, although two observed an inverse association 

between VSDs and PM2.5 [2–4,6]. We observed some positive associations as our model 

allows for daily exposures across post-conception gestational weeks 2–8 while having the 

ability to account for the introduced multicollinearity between the exposures. Ignoring the 

multicollinearity by not accounting for the temporal correlation between the introduced 

parameters will lead to a possible lack of convergence for smaller sample sizes and increased 

uncertainty for the estimated parameters for larger sample sizes. Our results are similar to a 

previous investigation of PM2.5 and CHDs within the NBDPS that used weekly averages to 

assign exposure [5]. Our examination of a finer time scale was facilitated by the use of 

exposure estimates from the downscaler CMAQ model, which provides daily estimates for 
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PM2.5 for the entire population. This improves upon studies that utilize monitoring data, 

where PM2.5 is often only measured every 3rd or 6th day and where the population is often 

limited to those who live within a given distance of a monitor.

Additionally, the modeling of a multinomial vector of responses allows the possibility of 

information sharing across the different individual defects within a broader grouping. In 

previous work, the amount of sharing was dictated by a fixed model parameter [5]. This 

model allows for more flexibility, which is important given the varying amounts of 

correlation within different defect-groupings. This could prove more important in different 

settings using other time-varying exposures. Overall, the model is shown to be flexible 

enough to identify individually significant associations while allowing for CHD-specific 

relationships with each confounder. Residual confounding is still a possibility, due both to 

having to collapse categories of confounders (for example combining Hispanics and Asians 

into an ‘Other’ category) to address small cell sizes and education being an imperfect 

measure of socioeconomic status.

The use of a finer time scale, such as the daily average exposures, could have the potential to 

increase exposure misclassification. Also, gestational age represents an estimate and could 

therefore lead to exposure misclassification when assigning daily averages of exposure. 

However, we do not anticipate this misclassification to vary by case-status, and thus expect 

that any resulting bias would be non-differential. The NBDPS collected complete residential 

histories during pregnancy, allowing us to avoid misclassification related to using address at 

delivery as well as allowing us to account for residential mobility when assigning these 

shorter windows of exposure. There is still the potential for misclassification due to only 

using home addresses, but we do not anticipate this to vary by case status. Even with 

potentially increased levels of misclassification, it is important to examine these finer 

windows of vulnerability and compare results across different methods. The consistency of 

our findings with similar NBDPS windows research that used weekly exposure estimates 

and a less complex model [5], despite having slightly different populations and exposure 

assessment methods, provides evidence to support our findings and suggests that our results 

are not due to misclassification causing an overestimation of exposure timing certainty. The 

presented simulation study also suggests that the resulting inference is likely similar to the 

error-free inference with parameter estimates closer to zero overall. We recommend similar 

simulation studies be carried out in future applications of the model where error amounts 

may differ. Using the newly developed model, we were able to identify potential daily 

critical windows of susceptibility to ambient PM2.5 exposure during fetal cardiac 

development. This model can be applied to other time-varying exposures that may be 

associated with development of a selected health outcome of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Model fitting details

Use of the multinomial probit model results in semi-conjugacy in the model [28]. We fit the 

model using Markov chain Monte Carlo (MCMC) sampling techniques which include Gibbs 

sampling with a Metropolis step for selected parameters. The full conditional distribution for 

a single latent variable, wij, has the form of an independent truncated normal distribution 

with a mean of  and variance of one. The distribution is 

truncated at max{wi(−j), 0} where wi(−j) = (wi1, …, wi, j−1, wi, j+1, …, wiJ)T and the 

direction of truncation is determined by the observed outcome. If Yij = 1, then the 

distribution is strictly greater than this value, otherwise it is strictly less than this value. The 

wij parameters are then sampled from this truncated normal distribution one at a time where 

the truncation point is recalculated after each successive sample.

Next, we sample from the full conditional distribution of the  parameter 

vector using Gibbs sampling once again. The β vector has a multivariate normal full 

conditional distribution with mean vector  and covariance 

matrix  where  and Xi is a J by Jp block diagonal 

matrix with the birth i specific covariates on the diagonal, 

 and Zi is a J by (J)(K + 1 − k0) block diagonal 

matrix with the birth i specific daily average pollution exposures (standardized at each 

gestational day across all women) on the diagonal, and η = (η(1)T, …, η(G)T)T.

The complete η vector also has a convenient form useful for Gibbs sampling. The full 

conditional distribution has a multivariate normal form with mean vector 

 and covariance matrix  where Ση is a 

block diagonal matrix with Ω(g) ⊗ Σ(ϕg), g = 1, …, G on the diagonal.

The covariance matrices which control the cross covariance of the individual defects within 

a broader grouping also have a known full conditional form. The inverse of these matrices, 

Ω(g)−1 have a Wishart full conditional distribution with scale matrix equal to (S + ngIng)−1 

and degrees of freedom equal to ng + K + 1 − k0 where 

, and Ing is the ng by ng 

identity matrix.

Finally, we update the temporal smoothness parameters (ϕg) using the Metropolis sampling 

algorithm. We first transform the ϕg parameters to the real line so that a normal proposal 

density can be used by assigning . Sampling is carried out for this 
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transformed variable and we back-transform to obtain ϕg upon completion. The log of the 

full conditional distribution is given as
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Figure 1. 
Adjusted posterior means and 95% credible intervals for a change in right ventricular 

outflow tract obstruction defects latent variables associated with a 1-standard deviation 

increase in daily average PM2.5 exposure during weeks 2 through 8 post-conception, 

National Birth Defects Prevention Study, 2001–2006. Individual plots correspond to (a) 

Pulmonary Valve Stenosis (b) Atresia. Red, dashed lines indicate that the 95% credible 

interval does not include zero. Adjusted for maternal race/ethnicity, maternal age, maternal 

education, maternal tobacco use, maternal alcohol consumption and site-specific septal case 

ratio.
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Figure 2. 
Adjusted posterior means and 95% credible intervals for a change in conotruncal defects 

latent variables associated with a 1-standard deviation increase in daily average PM2.5 

exposure during weeks 2 through 8 post-conception, National Birth Defects Prevention 

Study, 2001–2006. Individual plots correspond to (a) dextro-Transposition of the Great 

Arteries (b) Tetralogy of Fallot (c) Other Conotruncals. Red, dashed lines indicate that the 

95% credible interval does not include zero. Adjusted for maternal race/ethnicity, maternal 

age, maternal education, maternal tobacco use, maternal alcohol consumption and site-

specific septal case ratio.
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Figure 3. 
Adjusted posterior means and 95% credible intervals for a change in atrioventricular septal 

defect latent variable associated with a 1-standard deviation increase in daily average PM2.5 

exposure during weeks 2 through 8 post-conception, National Birth Defects Prevention 

Study, 2001–2006. Adjusted for maternal race/ethnicity, maternal age, maternal education, 

maternal tobacco use, maternal alcohol consumption and site-specific septal case ratio.
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Figure 4. 
Simulation study results of the average posterior means and average 95% credible intervals 

for four settings of gestational age error (GE) and pollution exposure error (PE). The error-

free inference results are overlaid on each figure in black for comparison purposes (three 

points representing the posterior mean, lower CI limit, and upper CI limit). Findings from a 

simulated example using the Tetralogy of Fallot defect and the sample of individuals from 

the National Birth Defects Prevention Study, 2001–2006.
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Figure 5. 
Simulation study results of the proportion of times that each daily association parameter had 

a 95% credible interval that did not include zero for four settings of gestational age error 

(GE) and pollution exposure error (PE) (post-conception pregnancy day on the x-axis). 

Findings from a simulated example using the Tetralogy of Fallot defect and the sample of 

individuals from the National Birth Defects Prevention Study, 2001–2006.
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