561 research outputs found

    Gravitational Duality in MacDowell-Mansouri Gauge Theory

    Get PDF
    Strong-weak duality invariance can only be defined for particular sectors of supersymmetric Yang-Mills theories. Nevertheless, for full non-Abelian non-supersymmetric theories, dual theories with inverted couplings, have been found. We show that an analogous procedure allows to find the dual action to the gauge theory of gravity constructed by the MacDowell-Mansouri model plus the superposition of a Θ\Theta term.Comment: 9 pages, LaTeX, no figure

    Classical and Quantum Nambu Mechanics

    Get PDF
    The classical and quantum features of Nambu mechanics are analyzed and fundamental issues are resolved. The classical theory is reviewed and developed utilizing varied examples. The quantum theory is discussed in a parallel presentation, and illustrated with detailed specific cases. Quantization is carried out with standard Hilbert space methods. With the proper physical interpretation, obtained by allowing for different time scales on different invariant sectors of a theory, the resulting non-Abelian approach to quantum Nambu mechanics is shown to be fully consistent.Comment: 44 pages, 1 figure, 1 table Minor changes to conform to journal versio

    The three-dimensional structure of Saturn's E ring

    Full text link
    Saturn's diffuse E ring consists of many tiny (micron and sub-micron) grains of water ice distributed between the orbits of Mimas and Titan. Various gravitational and non-gravitational forces perturb these particles' orbits, causing the ring's local particle density to vary noticeably with distance from the planet, height above the ring-plane, hour angle and time. Using remote-sensing data obtained by the Cassini spacecraft in 2005 and 2006, we investigate the E-ring's three-dimensional structure during a time when the Sun illuminated the rings from the south at high elevation angles (> 15 degrees). These observations show that the ring's vertical thickness grows with distance from Enceladus' orbit and its peak brightness density shifts from south to north of Saturn's equator plane with increasing distance from the planet. These data also reveal a localized depletion in particle density near Saturn's equatorial plane around Enceladus' semi-major axis. Finally, variations are detected in the radial brightness profile and the vertical thickness of the ring as a function of longitude relative to the Sun. Possible physical mechanisms and processes that may be responsible for some of these structures include solar radiation pressure, variations in the ambient plasma, and electromagnetic perturbations associated with Saturn's shadow.Comment: 42 Pages, 13 Figures, modified to include minor proof correction

    Re-examining the relationship between audiometric profile and tinnitus pitch

    Get PDF
    Objective: We explored the relationship between audiogram shape and tinnitus pitch to answer questions arising from neurophysiological models of tinnitus: ‘Is the dominant tinnitus pitch associated with the edge of hearing loss?’ and ‘Is such a relationship more robust in people with narrow tinnitus bandwidth or steep sloping hearing loss?’ Design: A broken-stick fitting objectively quantified slope, degree and edge of hearing loss up to 16 kHz. Tinnitus pitch was characterized up to 12 kHz. We used correlation and multiple regression analyses for examining relationships with many potentially predictive audiometric variables. Study Sample: 67 people with chronic bilateral tinnitus (43 men and 24 women, aged from 22 to 81 years). Results: In this ample of 67 subjects correlation failed to reveal any relationship between the tinnitus pitch and the edge frequency. The tinnitus pitch generally fell within the area of hearing loss. The pitch of the tinnitus in a subset of subjects with a narrow tinnitus bandwidth (n = 23) was associated with the audiometric edge. Conclusions: Our findings concerning subjects with narrow tinnitus bandwidth suggest that this can be used as an a priori inclusion criterion. A large group of such subjects should be tested to confirm these results

    Black Hole Microstates and Attractor Without Supersymmetry

    Get PDF
    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument.Comment: 50 pages; references adde

    The Seven-sphere and its Kac-Moody Algebra

    Full text link
    We investigate the seven-sphere as a group-like manifold and its extension to a Kac-Moody-like algebra. Covariance properties and tensorial composition of spinors under S7S^7 are defined. The relation to Malcev algebras is established. The consequences for octonionic projective spaces are examined. Current algebras are formulated and their anomalies are derived, and shown to be unique (even regarding numerical coefficients) up to redefinitions of the currents. Nilpotency of the BRST operator is consistent with one particular expression in the class of (field-dependent) anomalies. A Sugawara construction is given.Comment: 22 pages. Macropackages used: phyzzx, epsf. Three epsf figure files appende

    The Hamiltonian of Einstein affine-metric formulation of General Relativity

    Full text link
    It is shown that the Hamiltonian of the Einstein affine-metric (first order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as is the case for the second order formulation. In the second order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables [arXiv: 0809.0097]. For the first order formulation, the necessity of such a redefinition "to correspond to diffeomorphism invariance" (reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second and first order formulations of metric GR. The first order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed.Comment: 74 page
    corecore