100 research outputs found
Recommended from our members
Could Stannern-trend eucrites be crustal-contaminated melts?
In this paper, we show that the composition of Stannern trend eucrites can be satisfactorily explained by contamination of normal main group eucrites by a crustal partial melt
Field-linked States of Ultracold Polar Molecules
We explore the character of a novel set of ``field-linked'' states that were
predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006
(2003)]. These states exist at ultralow temperatures in the presence of an
electrostatic field, and their properties are strongly dependent on the field's
strength. We clarify the nature of these quasi-bound states by constructing
their wave functions and determining their approximate quantum numbers. As the
properties of field-linked states are strongly defined by anisotropic dipolar
and Stark interactions, we construct adiabatic surfaces as functions of both
the intermolecular distance and the angle that the intermolecular axis makes
with the electric field. Within an adiabatic approximation we solve the 2-D
Schrodinger equation to find bound states, whose energies correlate well with
resonance features found in fully-converged multichannel scattering
calculations
Spin-Glass State in
Magnetic susceptibility, magnetization, specific heat and positive muon spin
relaxation (\musr) measurements have been used to characterize the magnetic
ground-state of the spinel compound . We observe a spin-glass
transition of the S=1/2 spins below characterized
by a cusp in the susceptibility curve which suppressed when a magnetic field is
applied. We show that the magnetization of depends on the
magnetic histo Well below , the muon signal resembles the dynamical
Kubo-Toyabe expression reflecting that the spin freezing process in results Gaussian distribution of the magnetic moments. By means of
Monte-Carlo simulati we obtain the relevant exchange integrals between the spins in this compound.Comment: 6 pages, 16 figure
Olaparib in combination with pegylated liposomal doxorubicin for platinum-resistant ovarian cancer regardless of BRCA status : a GEICO phase II trial (ROLANDO study)
There is limited evidence for the benefit of olaparib in platinum-resistant ovarian cancer (PROC) patients with BRCA wild-type tumors. This study investigated whether this combination of a DNA-damaging chemotherapy plus olaparib is effective in PROC regardless BRCA status. Patients with high-grade serous or endometrioid ovarian carcinoma and one previous PROC recurrence were enrolled regardless of BRCA status. Patients with ≤4 previous lines (up to 5 in BRCA -mut) with at least one previous platinum-sensitive relapse were included; primary PROC was allowed only in case of BRCA -mut. Patients initially received six cycles of olaparib 300 mg b.i.d. (biduum) + intravenous pegylated liposomal doxorubicin (PLD) 40 mg/m 2 (PLD40) every 28 days, followed by maintenance with olaparib 300 mg b.i.d. until progression or toxicity. The PLD dose was reduced to 30 mg/m 2 (PLD30) due to toxicity. The primary endpoint was progression-free survival (PFS) at 6 months (6m-PFS) by RECIST version 1.1. A proportion of 40% 6m-PFS or more was considered of clinical interest. From 2017 to 2020, 31 PROC patients were included. BRCA mutations were present in 16%. The median of previous lines was 2 (range 1-5). The overall disease control rate was 77% (partial response rate of 29% and stable disease rate of 48%). After a median follow-up of 10 months, the 6m-PFS and median PFS were 47% and 5.8 months, respectively. Grade ≥3 treatment-related adverse events occurred in 74% of patients, with neutropenia/anemia being the most frequent. With PLD30 serious AEs were less frequent than with PLD40 (21% versus 47%, respectively); moreover, PLD30 was associated with less PLD delays (32% versus 38%) and reductions (16% versus 22%). The PLD-olaparib combination has shown significant activity in PROC regardless of BRCA status. PLD at 30 mg/m 2 is better tolerated in the combination
The Crystallography of Color Superconductivity
We develop the Ginzburg-Landau approach to comparing different possible
crystal structures for the crystalline color superconducting phase of QCD, the
QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase,
quarks of different flavor with differing Fermi momenta form Cooper pairs with
nonzero total momentum, yielding a condensate that varies in space like a sum
of plane waves. We work at zero temperature, as is relevant for compact star
physics. The Ginzburg-Landau approach predicts a strong first-order phase
transition (as a function of the chemical potential difference between quarks)
and for this reason is not under quantitative control. Nevertheless, by
organizing the comparison between different possible arrangements of plane
waves (i.e. different crystal structures) it provides considerable qualitative
insight into what makes a crystal structure favorable. Together, the
qualitative insights and the quantitative, but not controlled, calculations
make a compelling case that the favored pairing pattern yields a condensate
which is a sum of eight plane waves forming a face-centered cubic structure.
They also predict that the phase is quite robust, with gaps comparable in
magnitude to the BCS gap that would form if the Fermi momenta were degenerate.
These predictions may be tested in ultracold gases made of fermionic atoms. In
a QCD context, our results lay the foundation for a calculation of vortex
pinning in a crystalline color superconductor, and thus for the analysis of
pulsar glitches that may originate within the core of a compact star.Comment: 41 pages, 13 figures, 1 tabl
Enhanced spin current transmissivity in Pt/ CoFe2 O4 bilayers with thermally induced interfacial magnetic modification
We report on processes of generation of spin current and conversion into charge current in CoFe2O4/Pt bilayers by means of spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) experiments. Specifically, we explore (001) full-textured CoFe2O4 (CFO) thin films grown onto (001)-oriented SrTiO3 substrates, covered with Pt layers deposited under two different conditions: one at room temperature and another at high temperature (400°C). The x-ray absorption spectroscopy measurements indicate that the Pt layer deposited at high temperature induces an interfacial magneticlike phase (Fe,Co)-Pt alloy, which influences the magnetic behavior of the structure and is responsible for the enhancement of the spin transmission at the interface. By analyzing the SMR data, we conclude that collinear and noncollinear magnetic domains coexist at the CFO-(Fe,Co)-Pt interface. By combining the data from the SMR and SSE measurements, we obtain the ratios between the values of the spin Hall angle (θSH) and between the ones of the spin-mixing conductance (geff↑↓) in the two samples. We demonstrate that while the value of θSH decreases by one-half with the heat treatment, the value of geff↑↓ increases by more than one order of magnitude. We interpret the increase of geff↑↓ in terms of unexpected magnetic reconstructions, which produce an enhancement of the magnetic moment arisen at the interface. Since the spin-mixing conductance determines the efficiency of the spin current transmission through the interface, the spinel ferrite cobalt in contact with a normal metal with a suitable heat treatment becomes a promising material for spintronics device applications.This research was supported in Brazil by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), Financiadora de Estudos e Projetos
(FINEP), Fundação de Amparo à Promoção da Ciência,
Tecnologia e Inovação do Estado do Rio Grande do Norte
(FAPERN), Fundação de Amparo à Ciência e Tecnologia do
Estado de Pernambuco (FACEPE), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant
No. 2022/04496-0; and in Chile by Fondo Nacional de
Desarrollo Científico y Tecnológico (FONDECYT) Grant
No. 1210641 and FONDEQUIP EQM180103. Ministerio
de Ciencia, Universidades e Investigación (SPAIN) (Grants
No. PID2020-118479RB-I00/AEI/10.13039/501100011033
and No. TED2021-129857B-I00. The authors acknowledge
support of the INCT of Spintronics and Advanced Magnetic Nanostructures (INCT-SpinNanoMag), CNPq 406836/
2022–1.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann's refined classification
Purpose: Triple-negative breast cancer (TNBC) requires the identification of reliable predictors of response to neoadjuvant chemotherapy (NACT). For this purpose, we aimed to evaluate the performance of the TNBCtype-4 classifier in a cohort of patients with TNBC treated with neoadjuvant carboplatin and docetaxel (TCb). Methods: Patients with TNBC were accrued in a nonrandomized trial of neoadjuvant carboplatin AUC 6 and docetaxel 75 mg/m2 for six cycles. Response was evaluated in terms of pathologic complete response (pCR, ypT0/is ypN0) and residual cancer burden by Symmans and colleagues. Lehmann's subtyping was performed using the TNBCtype online tool from RNAseq data, and germline sequencing of a panel of seven DNA damage repair genes was conducted. Results: Ninety-four out of the 121 patients enrolled in the trial had RNAseq available. The overall pCR rate was 44.7%. Lehmann subtype distribution was 34.0% BL1, 20.2% BL2, 23.4% M, 14.9% LAR, and 7.4% were classified as ERþ. Response to NACT with TCb was significantly associated with Lehmann subtype (P ¼ 0.027), even in multivariate analysis including tumor size and nodal involvement, with BL1 patients achieving the highest pCR rate (65.6%), followed by BL2 (47.4%), M (36.4%), and LAR (21.4%). BL1 was associated with a significant younger age at diagnosis and higher ki67 values. Among our 10 germline mutation carriers, 30% were BL1, 40% were BL2, and 30% were M. Conclusions: TNBCtype-4 is associated with significantly different pCR rates for the different subtypes, with BL1 and LAR displaying the best and worse responses to NACT, respectively
- …