100 research outputs found

    Field-linked States of Ultracold Polar Molecules

    Full text link
    We explore the character of a novel set of ``field-linked'' states that were predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003)]. These states exist at ultralow temperatures in the presence of an electrostatic field, and their properties are strongly dependent on the field's strength. We clarify the nature of these quasi-bound states by constructing their wave functions and determining their approximate quantum numbers. As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermolecular axis makes with the electric field. Within an adiabatic approximation we solve the 2-D Schrodinger equation to find bound states, whose energies correlate well with resonance features found in fully-converged multichannel scattering calculations

    Spin-Glass State in CuGa2O4\rm CuGa_2O_4

    Full text link
    Magnetic susceptibility, magnetization, specific heat and positive muon spin relaxation (\musr) measurements have been used to characterize the magnetic ground-state of the spinel compound CuGa2O4\rm CuGa_2O_4. We observe a spin-glass transition of the S=1/2 Cu2+\rm Cu^{2+} spins below Tf=2.5K\rm T_f=2.5K characterized by a cusp in the susceptibility curve which suppressed when a magnetic field is applied. We show that the magnetization of CuGa2O4\rm CuGa_2O_4 depends on the magnetic histo Well below Tf\rm T_f, the muon signal resembles the dynamical Kubo-Toyabe expression reflecting that the spin freezing process in CuGa2O4\rm CuGa_2O_4 results Gaussian distribution of the magnetic moments. By means of Monte-Carlo simulati we obtain the relevant exchange integrals between the Cu2+\rm Cu^{2+} spins in this compound.Comment: 6 pages, 16 figure

    Olaparib in combination with pegylated liposomal doxorubicin for platinum-resistant ovarian cancer regardless of BRCA status : a GEICO phase II trial (ROLANDO study)

    Get PDF
    There is limited evidence for the benefit of olaparib in platinum-resistant ovarian cancer (PROC) patients with BRCA wild-type tumors. This study investigated whether this combination of a DNA-damaging chemotherapy plus olaparib is effective in PROC regardless BRCA status. Patients with high-grade serous or endometrioid ovarian carcinoma and one previous PROC recurrence were enrolled regardless of BRCA status. Patients with ≤4 previous lines (up to 5 in BRCA -mut) with at least one previous platinum-sensitive relapse were included; primary PROC was allowed only in case of BRCA -mut. Patients initially received six cycles of olaparib 300 mg b.i.d. (biduum) + intravenous pegylated liposomal doxorubicin (PLD) 40 mg/m 2 (PLD40) every 28 days, followed by maintenance with olaparib 300 mg b.i.d. until progression or toxicity. The PLD dose was reduced to 30 mg/m 2 (PLD30) due to toxicity. The primary endpoint was progression-free survival (PFS) at 6 months (6m-PFS) by RECIST version 1.1. A proportion of 40% 6m-PFS or more was considered of clinical interest. From 2017 to 2020, 31 PROC patients were included. BRCA mutations were present in 16%. The median of previous lines was 2 (range 1-5). The overall disease control rate was 77% (partial response rate of 29% and stable disease rate of 48%). After a median follow-up of 10 months, the 6m-PFS and median PFS were 47% and 5.8 months, respectively. Grade ≥3 treatment-related adverse events occurred in 74% of patients, with neutropenia/anemia being the most frequent. With PLD30 serious AEs were less frequent than with PLD40 (21% versus 47%, respectively); moreover, PLD30 was associated with less PLD delays (32% versus 38%) and reductions (16% versus 22%). The PLD-olaparib combination has shown significant activity in PROC regardless of BRCA status. PLD at 30 mg/m 2 is better tolerated in the combination

    The Crystallography of Color Superconductivity

    Get PDF
    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e. different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star.Comment: 41 pages, 13 figures, 1 tabl

    Enhanced spin current transmissivity in Pt/ CoFe2 O4 bilayers with thermally induced interfacial magnetic modification

    Get PDF
    We report on processes of generation of spin current and conversion into charge current in CoFe2O4/Pt bilayers by means of spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) experiments. Specifically, we explore (001) full-textured CoFe2O4 (CFO) thin films grown onto (001)-oriented SrTiO3 substrates, covered with Pt layers deposited under two different conditions: one at room temperature and another at high temperature (400°C). The x-ray absorption spectroscopy measurements indicate that the Pt layer deposited at high temperature induces an interfacial magneticlike phase (Fe,Co)-Pt alloy, which influences the magnetic behavior of the structure and is responsible for the enhancement of the spin transmission at the interface. By analyzing the SMR data, we conclude that collinear and noncollinear magnetic domains coexist at the CFO-(Fe,Co)-Pt interface. By combining the data from the SMR and SSE measurements, we obtain the ratios between the values of the spin Hall angle (θSH) and between the ones of the spin-mixing conductance (geff↑↓) in the two samples. We demonstrate that while the value of θSH decreases by one-half with the heat treatment, the value of geff↑↓ increases by more than one order of magnitude. We interpret the increase of geff↑↓ in terms of unexpected magnetic reconstructions, which produce an enhancement of the magnetic moment arisen at the interface. Since the spin-mixing conductance determines the efficiency of the spin current transmission through the interface, the spinel ferrite cobalt in contact with a normal metal with a suitable heat treatment becomes a promising material for spintronics device applications.This research was supported in Brazil by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Promoção da Ciência, Tecnologia e Inovação do Estado do Rio Grande do Norte (FAPERN), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant No. 2022/04496-0; and in Chile by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant No. 1210641 and FONDEQUIP EQM180103. Ministerio de Ciencia, Universidades e Investigación (SPAIN) (Grants No. PID2020-118479RB-I00/AEI/10.13039/501100011033 and No. TED2021-129857B-I00. The authors acknowledge support of the INCT of Spintronics and Advanced Magnetic Nanostructures (INCT-SpinNanoMag), CNPq 406836/ 2022–1.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann's refined classification

    Get PDF
    Purpose: Triple-negative breast cancer (TNBC) requires the identification of reliable predictors of response to neoadjuvant chemotherapy (NACT). For this purpose, we aimed to evaluate the performance of the TNBCtype-4 classifier in a cohort of patients with TNBC treated with neoadjuvant carboplatin and docetaxel (TCb). Methods: Patients with TNBC were accrued in a nonrandomized trial of neoadjuvant carboplatin AUC 6 and docetaxel 75 mg/m2 for six cycles. Response was evaluated in terms of pathologic complete response (pCR, ypT0/is ypN0) and residual cancer burden by Symmans and colleagues. Lehmann's subtyping was performed using the TNBCtype online tool from RNAseq data, and germline sequencing of a panel of seven DNA damage repair genes was conducted. Results: Ninety-four out of the 121 patients enrolled in the trial had RNAseq available. The overall pCR rate was 44.7%. Lehmann subtype distribution was 34.0% BL1, 20.2% BL2, 23.4% M, 14.9% LAR, and 7.4% were classified as ERþ. Response to NACT with TCb was significantly associated with Lehmann subtype (P ¼ 0.027), even in multivariate analysis including tumor size and nodal involvement, with BL1 patients achieving the highest pCR rate (65.6%), followed by BL2 (47.4%), M (36.4%), and LAR (21.4%). BL1 was associated with a significant younger age at diagnosis and higher ki67 values. Among our 10 germline mutation carriers, 30% were BL1, 40% were BL2, and 30% were M. Conclusions: TNBCtype-4 is associated with significantly different pCR rates for the different subtypes, with BL1 and LAR displaying the best and worse responses to NACT, respectively
    corecore