4 research outputs found

    Altered functional connectivity in essential tremor

    Get PDF
    Essential tremor (ET) has been associated with a spectrum of clinical features, with both motor and nonmotor elements, including cognitive deficits. We employed resting-state functional magnetic resonance imaging (fMRI) to assess whether brain networks that might be involved in the pathogenesis of nonmotor manifestations associated with ET are altered, and the relationship between abnormal connectivity and ET severity and neuropsychological function. Resting-state fMRI data in 23 ET patients (12 women and 11 men) and 22 healthy controls (HC) (12 women and 10 men) were analyzed using independent component analysis, in combination with a ‘‘dualregression’’ technique, to identify the group differences of resting-state networks (RSNs) (default mode network [DMN] and executive, frontoparietal, sensorimotor, cerebellar, auditory/language, and visual networks). All participants underwent a neuropsychological and neuroimaging session, where resting-state data were collected. Relative to HC, ET patients showed increased connectivity in RSNs involved in cognitive processes (DMN and frontoparietal networks) and decreased connectivity in the cerebellum and visual networks. Changes in network integrity were associated not only with ET severity (DMN) and ET duration (DMN and left frontoparietal network), but also with cognitive ability.Moreover, in at least 3 networks (DMN and frontoparietal networks), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, verbal memory, visual memory, and language) and depressive symptoms. Further, in the visual network, decreased connectivity was associated with worse performance on visuospatial ability. ET was associated with abnormal brain connectivity in major RSNs that might be involved in both motor and nonmotor symptoms

    Inner ear drug delivery through a cochlear implant: pharmacokinetics in a macaque experimental model

    No full text
    Objectives: The method of drug delivery directly into the cochlea with an implantable pump connected to a CI electrode array ensures long-term delivery and effective dose control, and also provides the pos- sibility to use different drugs. The objective is to develop a model of inner ear pharmacokinetics of an implanted cochlea, with the delivery of FITC-Dextran, in the non-human primate model. Design: A preclinical cochlear electrode array (CI Electrode Array HL14DD, manufactured by Cochlear Ltd.) attached to an implantable peristaltic pump filled with FITC-Dextran was implanted unilaterally in a total of 15 Macaca fascicularis (Mf). Three groups were created (5 Mf in each group), according to three differ- ent drug delivery times: 2 hours, 24 hours and 7 days. Perilymph (10 samples, 1μL each) was sampled from the apex of the cochlea and measured immediately after extraction with a spectrofluorometer. After scarifying the specimens, x-Rays and histological analysis were performed. Results: Surgery, sampling and histological analysis were performed successfully in all specimens. FITC- Dextran quantification showed different patterns, depending on the delivery group. In the 2 hours injec- tion experiment, an increase in FITC-Dextran concentrations over the sample collection time was seen, reaching maximum concentration peaks (420-964μM) between samples 5 and 7, decreasing in successive samples, without returning to baseline. The 24-hours and 7-days injection experiments showed even be- haviour throughout the 10 samples obtained, reaching a plateau with mean concentrations ranging from 2144 to 2564 μM and from 1409 to 2502μM, respectively. Statistically significant differences between the 2 hours and 24 hours groups (p = 0.001) and between the 2 hours and 7 days groups (p = 0.037) were observed, while between the 24 hours and 7 days groups no statistical differences were found. Conclusions: This experimental study shows that a model of drug delivery and pharmacokinetics using an active pump connected to an electrode array is feasible in Mf. An infusion time ranging from 2 to 24 hours is required to reach a maximum concentration peak at the apex. It establishes then an even concentration profile from base to apex that is maintained throughout the infusion time in Mf. Flow mechanisms during injection and during sampling that may explain such findings may involve cochlear aqueduct flow as well as the possible existence of substance exchange from scala tympani to extracel- lular spaces, such as the modiolar space or the endolymphatic sinus, acting as a substance reservoir to maintain a relatively flat concentration profile from base to apex during sampling. Leveraging the learnings achieved by experimentation in rodent models, we can move to experiment in non-human primate with the aim of achieving a useful model that provides transferrable data to hu- man pharmacokinetics. Thus, it may broaden clinical and therapeutic approaches to inner ear diseases

    Inner ear drug delivery through a cochlear implant: pharmacokinetics in a macaque experimental model

    Get PDF
    Objectives: The method of drug delivery directly into the cochlea with an implantable pump connected to a CI electrode array ensures long-term delivery and effective dose control, and also provides the pos- sibility to use different drugs. The objective is to develop a model of inner ear pharmacokinetics of an implanted cochlea, with the delivery of FITC-Dextran, in the non-human primate model. Design: A preclinical cochlear electrode array (CI Electrode Array HL14DD, manufactured by Cochlear Ltd.) attached to an implantable peristaltic pump filled with FITC-Dextran was implanted unilaterally in a total of 15 Macaca fascicularis (Mf). Three groups were created (5 Mf in each group), according to three differ- ent drug delivery times: 2 hours, 24 hours and 7 days. Perilymph (10 samples, 1μL each) was sampled from the apex of the cochlea and measured immediately after extraction with a spectrofluorometer. After scarifying the specimens, x-Rays and histological analysis were performed. Results: Surgery, sampling and histological analysis were performed successfully in all specimens. FITC- Dextran quantification showed different patterns, depending on the delivery group. In the 2 hours injec- tion experiment, an increase in FITC-Dextran concentrations over the sample collection time was seen, reaching maximum concentration peaks (420-964μM) between samples 5 and 7, decreasing in successive samples, without returning to baseline. The 24-hours and 7-days injection experiments showed even be- haviour throughout the 10 samples obtained, reaching a plateau with mean concentrations ranging from 2144 to 2564 μM and from 1409 to 2502μM, respectively. Statistically significant differences between the 2 hours and 24 hours groups (p = 0.001) and between the 2 hours and 7 days groups (p = 0.037) were observed, while between the 24 hours and 7 days groups no statistical differences were found. Conclusions: This experimental study shows that a model of drug delivery and pharmacokinetics using an active pump connected to an electrode array is feasible in Mf. An infusion time ranging from 2 to 24 hours is required to reach a maximum concentration peak at the apex. It establishes then an even concentration profile from base to apex that is maintained throughout the infusion time in Mf. Flow mechanisms during injection and during sampling that may explain such findings may involve cochlear aqueduct flow as well as the possible existence of substance exchange from scala tympani to extracel- lular spaces, such as the modiolar space or the endolymphatic sinus, acting as a substance reservoir to maintain a relatively flat concentration profile from base to apex during sampling. Leveraging the learnings achieved by experimentation in rodent models, we can move to experiment in non-human primate with the aim of achieving a useful model that provides transferrable data to hu- man pharmacokinetics. Thus, it may broaden clinical and therapeutic approaches to inner ear diseases
    corecore