12,513 research outputs found

    Structure of polydisperse inverse ferrofluids: Theory and computer simulation

    Full text link
    By using theoretical analysis and molecular dynamics simulations, we investigate the structure of colloidal crystals formed by nonmagnetic microparticles (or magnetic holes) suspended in ferrofluids (called inverse ferrofluids), by taking into account the effect of polydispersity in size of the nonmagnetic microparticles. Such polydispersity often exists in real situations. We obtain an analytical expression for the interaction energy of monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered tetragonal (bct) lattices are shown to possess the lowest energy when compared with other sorts of lattices and thus serve as the ground state of the systems. Also, the effect of microparticle size distributions (namely, polydispersity in size) plays an important role in the formation of various kinds of structural configurations. Thus, it seems possible to fabricate colloidal crystals by choosing appropriate polydispersity in size.Comment: 22 pages, 8 figure

    Magnetophoresis of nonmagnetic particles in ferrofluids

    Get PDF
    Ferrofluids containing nonmagnetic particles are called inverse ferrofluids. On the basis of the Ewald-Kornfeld formulation and the Maxwell-Garnett theory, we theoretically investigate the magnetophoretic force exerting on the nonmagnetic particles in inverse ferrofluids due to the presence of a nonuniform magnetic field, by taking into account the structural transition and long-range interaction. We numerically demonstrate that the force can be adjusted by choosing appropriate lattices, volume fractions, geometric shapes, and conductivities of the nonmagnetic particles, as well as frequencies of external magnetic fields.Comment: 24 pages, 7 figure

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    QCD corrections to polarization of J/\psi and \Upsilon at Fermilab Tevatron and CERN LHC

    Full text link
    In this work, we present more detail of the calculation on the NLO QCD corrections to polarization of direct J/psi production via color singlet at Tevatron and LHC, as well as the results for Upsilon for the first time. Our results show that the J/psi polarization status drastically changes from transverse polarization dominant at LO into longitudinal polarization dominant in the whole range of the transverse momentum ptp_t of J/psi when the NLO corrections are counted. For Upsilon production, the p_t distribution of the polarization status behaves almost the same as that for J/psi except that the NLO result is transverse polarization at small p_t range. Although the theoretical evaluation predicts a larger longitudinal polarization than the measured value at Tevatron, it may provide a solution towards the previous large discrepancy for J/psi and Upsilon polarization between theoretical predication and experimental measurement, and suggests that the next important step is to calculate the NLO corrections to hadronproduction of color octet state J/psi^(8) and Upsilon^(8). Our calculations are performed in two ways, namely we do and do not analytically sum over the polarizations, and then check them with each other.Comment: 12 pages, 12 figures, two columns, use revtex4; to appear in PR

    Real-time motion data annotation via action string

    Get PDF
    Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method

    A systematic TMRT observational study of Galactic 12^{12}C/13^{13}C ratios from Formaldehyde

    Full text link
    We present observations of the C-band 1101111_{10}-1_{11} (4.8 GHz) and Ku-band 2112122_{11}-2_{12} (14.5 GHz) K-doublet lines of H2_2CO and the C-band 1101111_{10}-1_{11} (4.6 GHz) line of H2_213^{13}CO toward a large sample of Galactic molecular clouds, through the Shanghai Tianma 65-m radio telescope (TMRT). Our sample with 112 sources includes strong H2_2CO sources from the TMRT molecular line survey at C-band and other known H2_2CO sources. All three lines are detected toward 38 objects (43 radial velocity components) yielding a detection rate of 34\%. Complementary observations of their continuum emission at both C- and Ku-bands were performed. Combining spectral line parameters and continuum data, we calculate the column densities, the optical depths and the isotope ratio H2_212^{12}CO/H2_213^{13}CO for each source. To evaluate photon trapping caused by sometimes significant opacities in the main isotopologue's rotational mm-wave lines connecting our measured K-doublets, and to obtain 12^{12}C/13^{13}C abundance ratios, we used the RADEX non-LTE model accounting for radiative transfer effects. This implied the use of the new collision rates from \citet{Wiesenfeld2013}. Also implementing distance values from trigonometric parallax measurements for our sources, we obtain a linear fit of 12^{12}C/13^{13}C = (5.08±\pm1.10)DGC_{GC} + (11.86±\pm6.60), with a correlation coefficient of 0.58. DGC_{GC} refers to Galactocentric distances. Our 12^{12}C/13^{13}C ratios agree very well with the ones deduced from CN and C18^{18}O but are lower than those previously reported on the basis of H2_2CO, tending to suggest that the bulk of the H2_2CO in our sources was formed on dust grain mantles and not in the gas phase.Comment: 27 pages, 8 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    Photo-based automatic 3D reconstruction of train accident scenes

    Get PDF
    Railway accidents place significant demands on the resources of, and support from, railway emergency management departments. Once an accident occurs, an efficient incident rescue plan needs to be delivered as early as possible to minimise the loss of life and property. However, in the railway sector, most relevant departments currently face a challenge in drawing up a rescue scheme effectively and accurately with the insufficient information collected from the scene of a train accident. To assist with the rescue planning, we propose a framework which can rapidly and automatically construct a 3D virtual scene of a train accident by utilising photos of the accident spot. The framework uses a hybrid 3D reconstruction method to extract the position and pose information of the carriages involved in an accident. It adopts a geographic information system and a 3D visualisation engine to model and display the landscapes and buildings at the site of a train accident. In order to assess and validate our prototype, we quantitatively evaluate our main algorithm and demonstrate the usage of our technology with two case studies including a simulated scene with an in-lab setting and a real train derailment scene from on-site pictures. The results of both are accoun table with high accuracy and represent the ability of timely modelling and visualisation of a train accident scene
    corecore