1,217 research outputs found

    Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines

    Get PDF
    We present the first comparison of profiles of H et He resonance lines observed by SUMER with theoretical profiles computed with our non-LTE radiative transfer code. We use the H I Lyman-beta, H I Lyman-epsilon, and He I 584 A lines. Our code allows us to obtain the plasma parameters in prominences in conjunction with a multi-line, multi-element set of observations. The plasma temperature in the prominence core is ~ 8600 K and the pressure is 0.03 dyn/cm^2. The Ly-beta line is formed in a higher temperature region (more than 11000 K).Comment: 2 pages, 2 color figures. Proceedings of SF2A, Semaine de l'Astrophysique Francaise, Journees de la SF2A 2006, Pari

    Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet

    Get PDF
    <b>Context</b>: Extreme ultraviolet resonance lines of neutral and ionised helium observed in prominences are difficult to interpret as the prominence plasma is optically thick at these wavelengths. If mass motions are taking place, as is the case in active and eruptive prominences, the diagnostic is even more complex. <b>Aims</b>: We aim at studying the effect of radial motions on the spectrum emitted by moving prominences in the helium resonance lines and at facilitating the interpretation of observations, in order to improve our understanding of these dynamic structures. <b>Methods</b>: We develop our non-local thermodynamic equilibrium radiative transfer code formerly used for the study of quiescent prominences. The new numerical code is now able to solve the statistical equilibrium and radiative transfer equations in the non-static case by using velocity-dependent boundary conditions for the solution of the radiative transfer problem. This first study investigates the effects of different physical conditions (temperature, pressure, geometrical thickness) on the emergent helium radiation. <b>Results</b>: The motion of the prominence plasma induces a Doppler dimming effect on the resonance lines of HE i and HE ii. The velocity effects are particularly important for the HE ii λ 304 Å line as it is mostly formed by resonant diffusion of incident radiation under prominence conditions. The HE i resonance lines at 584 and 537 Å also show some sensitivity to the motion of the plasma, all the more when thermal emission is not too important in these lines. We also show that it is necessary to consider partial redistribution in frequency for the scattering of the incident radiation. Conclusions.This set of helium lines offers strong diagnostic possibilities that can be exploited with the SOHO spectrometers and with the EIS spectrometer on board the Hinode satellite. The addition of other helium lines and of lines from other elements (in particular hydrogen) in the diagnostics will further enhance the strength of the method

    Partial redistribution effects in the formation of hydrogen lines in quiescent prominences

    Get PDF
    Departures from complete frequency redistribution (CRD) in hydrogen lines are investigated for solar prominences. Partial redistribution effects (PRD) are found both in the wings (their already known lowering) and in the central part of the L alpha line; a new feature is evidenced here: the partially coherent scattering in the near wings of the line leads to a double-peaked profile mirroring the incident solar radiation. With a low density model, we obtain a good agreement with OSO 8 observed profiles. On the contrary, the PRD computed L beta profile (lower density, no reversal) departs from the observed one, a result which calls for more progress in terms of non-LTE transfer and modelling

    Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling

    Get PDF
    In this study we show how hydrogen and helium lines modelling can be used to make a diagnostic of active and eruptive prominences. One motivation for this work is to identify the physical conditions during prominence activation and eruption. Hydrogen and helium lines are key in probing different parts of the prominence structure and inferring the plasma parameters. However, the interpretation of observations, being either spectroscopic or obtained with imaging, is not straightforward. Their resonance lines are optically thick, and the prominence plasma is out of local thermodynamic equilibrium due to the strong incident radiation coming from the solar disk. In view of the shift of the incident radiation occurring when the prominence plasma flows radially, it is essential to take into account velocity fields in the prominence diagnostic. Therefore we need to investigate the effects of the radial motion of the prominence plasma on hydrogen and helium lines. The method that we use is the resolution of the radiative transfer problem in the hydrogen and helium lines out of local thermodynamic equilibrium. We study the variation of the computed integrated intensities in H and He lines with the radial velocity of the prominence plasma. We can confirm that there exist suitable lines which can be used to make a diagnostic of the plasma in active and eruptive prominences in the presence of velocity fields.Comment: 5 pages, 4 colour figure

    ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

    Get PDF
    This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and the epigraph set of the smooth component form a localization set that is endowed with a self-concordant augmented barrier. Our implementation uses an approximate analytic center associated with that barrier to query the oracle of the nonsmooth component. The paper also proposes an approximation scheme for the original objective. An active set strategy can be applied to the transformed problem: it reduces the dimension of the dual space and accelerates computations. The new approach solves huge instances with high accuracy. The method is compared to alternative approaches proposed in the literatur

    Modelling of helium spectrum in solar prominences

    Get PDF
    No abstract available

    Some relationships between radiative and atmospheric quantities through 1D NLTE modeling of prominences in the Mg II lines

    Get PDF
    International audienceContext. With more than four years of IRIS observations, and in order to avoid building customized diagnostics for each observation, it is useful to derive some simple relations between spectra and physical quantities. This is even more useful for the k and h lines of Mg II, which require complex non-local-thermodynamic-equilibrium NLTE treatments.Aims. The aim of this work concerning prominences is to correlate observable spectral features in h and k lines of Mg II to physical quantities such as the density and the emission measure (EM) in the same way as similar correlations have been obtained in the hydrogen lines. In this way, and within approximations done on some parameters such as temperature, it is possible to build pixel by pixel an IRIS map of the above-mentioned quantities.Methods. In order to simplify and shorten the modeling, we chose to compute one-dimensional (1D) isothermal and isobaric models that are treated with the PROM7 NLTE code available at MEDOC (IAS). We built a set of models with large ranges of temperature, pressure, and thickness. At all altitudes considered, we paid attention to the exact computation of the incident radiation. Then we compared the emergent Mg II h and k intensities with the corresponding hydrogen and electron densities and EMs.Results. From the NLTE computation, we derive correlations between the k and h emergent intensities on one hand and the densities and EM on the other hand. With some assumptions on the temperature, we obtain a unique relation between the k (and h) intensities and the EM that should be useful for deriving either the hydrogen and electron densities or the effective thickness of an observed prominence.Conclusions. From NLTE modeling, we have provided a relationship between observable integrated intensities of the Mg II resonance lines and prominence plasma EM, which will contribute to a first-order analysis of long time series of spectroscopic observations, for example, with IRIS. We anticipate building more complex relations between the profiles and other plasma quantities

    The helium spectrum in moving solar prominences

    Get PDF
    No abstract available

    Launch of a CME-associated eruptive prominence as observed with IRIS and ancillary instruments

    Get PDF
    International audienceAims. In this paper we focus on the possible observational signatures of the processes which have been put forward for explaining eruptive prominences. We also try to understand the variations in the physical conditions of eruptive prominences and estimate the masses leaving the Sun versus the masses returning to the Sun during eruptive prominences. Methods. As far as velocities are concerned, we combined an optical flow method on the Atmospheric Imaging Assembly (AIA) 304 Å and Interface Region Imaging Spectrograph (IRIS). Mg ii h&k observations in order to derive the plane-of-sky velocities in the prominence, and a Doppler technique on the IRIS Mg ii h&k profiles to compute the line-of-sight velocities. As far as densities are concerned, we compared the absolute observed intensities with values derived from non-local thermodynamic equilibrium radiative transfer computations to derive the total (hydrogen) density and consequently compute the mass flows. Results. The derived electron densities range from 1.3 × 10 9 to 6.0 × 10 10 cm −3 and the derived total hydrogen densities range from 1.5 × 10 9 to 2.4 × 10 11 cm −3 in different regions of the prominence. The mean temperature is around 1.1 × 10 4 K, which is higher than in quiescent prominences. The ionization degree is in the range of 0.1-10. The total (hydrogen) mass is in the range of 1.3 × 10 14-3.2 × 10 14 g. The total mass drainage from the prominence to the solar surface during the whole observation time of IRIS is about one order of magnitude smaller than the total mass of the prominence
    corecore