31,418 research outputs found

    Review of localization for 5d supersymmetric gauge theories

    No full text
    We give a pedagogical review of the localization of supersymmetric gauge theory on 5d toric Sasaki-Einstein manifolds. We construct the cohomological complex resulting from supersymmetry and consider its natural toric deformations with all equivariant parameters turned on. We also give detailed discussion on how the Sasaki-Einstein geometry permeates every aspect of the calculation, from Killing spinor, vanishing theorems to the index theorems.Comment: This is a contribution to the review volume `Localization techniques in quantum field theories' (eds. V. Pestun and M. Zabzine) which contains 17 Chapters. The complete volume is summarized in arXiv:1608.02952 and it can be downloaded at https://arxiv.org/src/1608.02952/anc/LocQFT.pdf or http://pestun.ihes.fr/pages/LocalizationReview/LocQFT.pd

    Prediction of destabilizing blade tip forces for shrouded and unshrouded turbines

    Get PDF
    The effect of a nonuniform flow field on the Alford force calculation is investigated. The ideas used here are based on those developed by Horlock and Greitzer. It is shown that the nonuniformity of the flow field does contribute to the Alford force calculation. An attempt is also made to include the effect of whirl speed. The values predicted by the model are compared with those obtained experimentally by Urlicks and Wohlrab. The possibility of using existing turbine tip loss correlations to predict beta is also exploited. The nonuniform flow field induced by the tip clearnance variation tends to increase the resultant destabilizing force over and above what would be predicted on the basis of the local variation of efficiency. On the one hand, the pressure force due to the nonuniform inlet and exit pressure also plays a part even for unshrouded blades, and this counteracts the flow field effects, so that the simple Alford prediction remains a reasonable approximation. Once the efficiency variation with clearance is known, the presented model gives a slightly overpredicted, but reasonably accurate destabilizing force. In the absence of efficiency vs. clearance data, an empirical tip loss coefficient can be used to give a reasonable prediction of destabilizing force. To a first approximation, the whirl does have a damping effect, but only of small magnitude, and thus it can be ignored for some purposes

    Single transverse-spin asymmetry in Drell-Yan lepton angular distribution

    Get PDF
    We calculate a single transverse-spin asymmetry for the Drell-Yan lepton-pair's angular distribution in perturbative QCD. At leading order in the strong coupling constant, the asymmetry is expressed in terms of a twist-3 quark-gluon correlation function T_F^{(V)}(x_1,x_2). In our calculation, the same result was obtained in both light-cone and covariant gauge in QCD, while keeping explicit electromagnetic current conservation for the virtual photon that decays into the lepton pair. We also present a numerical estimate of the asymmetry and compare the result to an existing other prediction.Comment: 15 pages, Revtex, 5 Postscript figures, uses aps.sty, epsfig.st

    Solar flare hard X-ray spikes observed by RHESSI: a statistical study

    Full text link
    Context. Hard X-ray (HXR) spikes refer to fine time structures on timescales of seconds to milliseconds in high-energy HXR emission profiles during solar flare eruptions. Aims. We present a preliminary statistical investigation of temporal and spectral properties of HXR spikes. Methods. Using a three-sigma spike selection rule, we detected 184 spikes in 94 out of 322 flares with significant counts at given photon energies, which were detected from demodulated HXR light curves obtained by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). About one fifth of these spikes are also detected at photon energies higher than 100 keV. Results. The statistical properties of the spikes are as follows. (1) HXR spikes are produced in both impulsive flares and long-duration flares with nearly the same occurrence rates. Ninety percent of the spikes occur during the rise phase of the flares, and about 70% occur around the peak times of the flares. (2) The time durations of the spikes vary from 0.2 to 2 s, with the mean being 1.0 s, which is not dependent on photon energies. The spikes exhibit symmetric time profiles with no significant difference between rise and decay times. (3) Among the most energetic spikes, nearly all of them have harder count spectra than their underlying slow-varying components. There is also a weak indication that spikes exhibiting time lags in high-energy emissions tend to have harder spectra than spikes with time lags in low-energy emissions.Comment: 16 pages, 13 figure

    Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: Diverse Appearance of the Broad-line Region

    Full text link
    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR), from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ\beta line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ\beta and other broad emission lines (e.g., \feii), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.Comment: emulatapj style, 15 pages, 6 figures, in pres

    Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS

    Full text link
    Chromospheric evaporation refers to dynamic mass motions in flare loops as a result of rapid energy deposition in the chromosphere. These have been observed as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines corresponding to upward motions at a few tens to a few hundreds of km/s. Past spectroscopic observations have also revealed a dominant stationary component, in addition to the blueshifted component, in emission lines formed at high temperatures (~10 MK). This is contradictory to evaporation models predicting predominant blueshifts in hot lines. The recently launched Interface Region Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic observations that focus on the chromosphere and transition region in the UV passband. Using the new IRIS observations, combined with coordinated observations from the EUV Imaging Spectrometer, we study the chromospheric evaporation process from the upper chromosphere to corona during an X1.0 flare on 2014 March 29. We find evident evaporation signatures, characterized by Doppler shifts and line broadening, at two flare ribbons separating from each other, suggesting that chromospheric evaporation takes place in successively formed flaring loops throughout the flare. More importantly, we detect dominant blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with theoretical predictions. We also find that, in this flare, gentle evaporation occurs at some locations in the rise phase of the flare, while explosive evaporation is detected at some other locations near the peak of the flare. There is a conversion from gentle to explosive evaporation as the flare evolves.Comment: ApJ in pres

    Scattering of Glue by Glue on the Light-cone Worldsheet I: Helicity Non-conserving Amplitudes

    Full text link
    We give the light-cone gauge calculation of the one-loop on-shell scattering amplitudes for gluon-gluon scattering which violate helicity conservation. We regulate infrared divergences by discretizing the p^+ integrations, omitting the terms with p^+=0. Collinear divergences are absent diagram by diagram for the helicity non-conserving amplitudes. We also employ a novel ultraviolet regulator that is natural for the light-cone worldsheet description of planar Feynman diagrams. We show that these regulators give the known answers for the helicity non-conserving one-loop amplitudes, which don't suffer from the usual infrared vagaries of massless particle scattering. For the maximal helicity violating process we elucidate the physics of the remarkable fact that the loop momentum integrand for the on-shell Green function associated with this process, with a suitable momentum routing of the different contributing topologies, is identically zero. We enumerate the counterterms that must be included to give Lorentz covariant results to this order, and we show that they can be described locally in the light-cone worldsheet formulation of the sum of planar diagrams.Comment: 30 pages, 17 figure

    Resummed QCD Power Corrections to Nuclear Shadowing

    Full text link
    We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our results for the Bjorken xx-, Q2Q^2- and AA-dependence of nuclear shadowing in F2A(x,Q2)F_2^A(x,Q^2) and the nuclear modifications to FLA(x,Q2)F_L^A(x,Q^2), obtained in terms of the QCD factorization approach, are consistent with the existing data. We demonstrate that the low-Q2Q^2 behavior of these data and the measured large longitudinal structure function point to a critical role for the power corrections when compared to other theoretical approaches.Comment: 4 pages, 3 figures, uses RevTeX 4. As published in Phys.Rev.Let

    Lyα\alpha Leaks in the Absorption Spectra of High Redshift QSOs

    Full text link
    Spectra of high redshift QSOs show deep Gunn-Peterson absorptions on the blue sides of the \Lya emissions lines. They can be decomposed into components called \Lya leaks, defined to be emissive regions in complementary to otherwise zero-fluxed absorption gaps. Just like \Lya absorption forests at low redshifts, \Lya leaks are both easy to find in observations and containing rich sets of statistical properties that can be used to study the early evolution of the IGM. Among all properties of a leak profile, we investigate its equivalent width in this paper, since it is weakly affected by instrumental resolution and noise. Using 10 Keck QSO spectra at z∼6z\sim6, we have measured the number density distribution function n(W,z)n(W,z), defined to be the number of leaks per equivalent width WW and per redshift zz, in the redshift range 5.4−6.05.4 - 6.0. These new observational statistics, in both the differential and cumulative forms, fit well to hydro numerical simulations of uniform ionizing background in the Λ\LambdaCDM cosmology. In this model, Ly α\alpha leaks are mainly due to low density voids. It supports the early studies that the IGM at z≃6z\simeq6 would still be in a highly ionized state with neutral hydrogen fraction ≃10−4\simeq 10^{-4}. Measurements of n(W,z)n(W,z) at z>6z>6 would be effective to probe the reionization of the IGM.Comment: 3 figs, accepted by ApJ
    • …
    corecore