25,084 research outputs found
Area Littlewood-Paley functions associated with Hermite and Laguerre operators
In this paper we study Lp-boundedness properties for area Littlewood-Paley
functions associated with heat semigroups for Hermite and Laguerre operator
Controlled localization of interacting bosons in a disordered optical lattice
We show that tunneling and localization properties of interacting ultracold
atoms in an optical lattice can be controlled by adiabatically turning on a
fast oscillatory force even in the presence of disorder. Our calculations are
based on the exact solution of the time-dependent Schroedinger equation, using
the Floquet formalism. Implications of our findings for larger systems and the
possibility of controlling the phase diagram of disordered-interacting bosonic
systems are discussed.Comment: 7 pages 7 fig
Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV
A spherical optical model potential (OMP) containing a dispersive term is
used to fit the available experimental database of angular distribution and
total cross section data for n + Al27 covering the energy range 0.1- 250 MeV
using relativistic kinematics and a relativistic extension of the Schroedinger
equation. A dispersive OMP with parameters that show a smooth energy dependence
and energy independent geometry are determined from fits to the entire data
set. A very good overall agreement between experimental data and predictions is
achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive
volume potential allows to achieve an excellent agreement up to 250 MeV.Comment: 13 figures (11 eps and 2 jpg), 3 table
From Disordered Crystal to Glass: Exact Theory
We calculate thermodynamic properties of a disordered model insulator,
starting from the ideal simple-cubic lattice () and increasing the
disorder parameter to . As in earlier Einstein- and Debye-
approximations, there is a phase transition at . For the
low-T heat-capacity whereas for , . The van
Hove singularities disappear at {\em any finite }. For we discover
novel {\em fixed points} in the self-energy and spectral density of this model
glass.Comment: Submitted to Phys. Rev. Lett., 8 pages, 4 figure
The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys
Crack initiation and propagation under high-cycle fatigue conditions have
been investigated for a polycrystalline Ni-based superalloy by in-situ
synchrotron assisted diffraction and phase contrast tomography. The cracks
nucleated along the longest coherent twin boundaries pre-existing on the
specimen surface, that were well oriented for slip and that presented a large
elastic incompatibility across them. Moreover, the propagation of
microstructurally short cracks was found to be determined by the easy slip
transfer paths across the pre-existing grain boundaries. This information can
only be obtained by characterization techniques like the ones presented here
that provide the full set of 3D microstructural information
Justifications-on-demand as a device to promote shifts of attention associated with relational thinking in elementary arithmetic
Student responses to arithmetical questions that can be solved by using arithmetical structure can serve to reveal the extent and nature of relational, as opposed to computational thinking. Here, student responses to probes which require them to justify-on-demand are analysed using a conceptual framework which highlights distinctions between different forms of attention. We analyse a number of actions observed in students in terms of forms of attention and shifts between them: in the short-term (in the moment), medium-term (over several tasks), and long-term (over a year). The main factors conditioning studentsÂŽ attention and its movement are identified and some didactical consequences are proposed
- âŠ