56 research outputs found

    Novel Trimodal MALDI Imaging Mass Spectrometry (IMS3) at 10 mu m Reveals Spatial Lipid and Peptide Correlates Implicated in A beta Plaque Pathology in Alzheimer's Disease

    Get PDF
    Multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can provide comprehensive molecular information in situ within the same tissue sections. This is of relevance for studying different brain pathologies such as Alzheimer’s disease (AD), where recent data suggest a critical relevance of colocalizing Aβ peptides and neuronal lipids. We here developed a novel trimodal, high-resolution (10 μm) MALDI imaging MS (IMS) paradigm for negative and positive ion mode lipid analysis and subsequent protein ion imaging on the same tissue section. Matrix sublimation of 1,5-diaminonaphthalene (1,5-DAN) enabled dual polarity lipid MALDI IMS on the same pixel points at high spatial resolutions (10 μm) and with high spectral quality. This was followed by 10 μm resolution protein imaging on the same measurement area, which allowed correlation of lipid signals with protein distribution patterns within distinct cerebellar regions in mouse brain. The demonstrated trimodal imaging strategy (IMS3) was further shown to be an efficient approach for simultaneously probing Aβ plaque-associated lipids and Aβ peptides within the hippocampus of 18 month-old transgenic AD mice (tgArcSwe). Here, IMS3 revealed a strong colocalization of distinct lipid species including ceramides, phosphatidylinositols, sulfatides (Cer 18:0, PI 38:4, ST 24:0) and lysophosphatidylcholines (LPC 16:0, LPC 18:0) with plaque-associated Aβ isoforms (Aβ 1–37, Aβ 1–38, Aβ 1–40). This highlights the potential of IMS3 as an alternative, superior approach to consecutively performed immuno-based Aβ staining strategies. Furthermore, the IMS3 workflow allowed for multimodal in situ MS/MS analysis of both lipids and Aβ peptides. Altogether, the here presented IMS3 approach shows great potential for comprehensive, high-resolution molecular analysis of histological features at cellular length scales with high chemical specificity. It therefore represents a powerful approach for probing the complex molecular pathology of, e.g., neurodegenerative diseases that are characterized by neurotoxic protein aggregation

    Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons

    Get PDF
    Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2

    Intracellular Calcium Deficits in Drosophila Cholinergic Neurons Expressing Wild Type or FAD-Mutant Presenilin

    Get PDF
    Much of our current understanding about neurodegenerative diseases can be attributed to the study of inherited forms of these disorders. For example, mutations in the presenilin 1 and 2 genes have been linked to early onset familial forms of Alzheimer's disease (FAD). Using the Drosophila central nervous system as a model we have investigated the role of presenilin in one of the earliest cellular defects associated with Alzheimer's disease, intracellular calcium deregulation. We show that expression of either wild type or FAD-mutant presenilin in Drosophila CNS neurons has no impact on resting calcium levels but does give rise to deficits in intracellular calcium stores. Furthermore, we show that a loss-of-function mutation in calmodulin, a key regulator of intracellular calcium, can suppress presenilin-induced deficits in calcium stores. Our data support a model whereby presenilin plays a role in regulating intracellular calcium stores and demonstrate that Drosophila can be used to study the link between presenilin and calcium deregulation

    Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease system is a powerful RNA-guided genome editing tool. CRISPR/Cas9 has been well studied in model plant species for targeted genome editing. However, few studies have been reported on plant species without whole genome sequence information. Currently, no study has been performed to manipulate metabolic pathways using CRISPR/Cas9. In this study, the type II CRISPR/SpCas9 system was used to knock out, via nonhomologous end-joining genome repair, the 4′OMT2 in opium poppy (Papaver somniferum L.), a gene which regulates the biosythesis of benzylisoquinoline alkaloids (BIAs). For sgRNA transcription, viral-based TRV and synthetic binary plasmids were designed and delivered into plant cells with a Cas9 encoding-synthetic vector by Agrobacterium-mediated transformation. InDels formed by CRISPR/Cas9 were detected by sequence analysis. Our results showed that the biosynthesis of BIAs (e.g. morphine, thebaine) was significantly reduced in the transgenic plants suggesting that 4′OMT2 was efficiently knocked-out by our CRISPR-Cas9 genome editing approach. In addition, a novel uncharacterized alkaloid was observed only in CRISPR/Cas9 edited plants. Thus, the applicabilitiy of the CRISPR/Cas9 system was demonstrated for the first time for medicinal aromatic plants by sgRNAs transcribed from both synthetic and viral vectors to regulate BIA metabolism and biosynthesis

    Symbols of Power: The Firearm Paintings of Madjedbebe (Malakunanja II)

    Get PDF
    Depictions of firearms in Australian Aboriginal rock art provide a unique opportunity to archaeologically explore the roles that this type of material culture played in times of culture contact. From the earliest interactions with explorers to the buffalo shooting enterprises of the twentieth century—firearms played complex and shifting roles in western Arnhem Land Aboriginal societies. The site of Madjedbebe (sometimes referred to as Malakunanja II in earlier academic literature) in Jabiluka (Mirarr Country), offers the opportunity to explore these shifting roles over time with an unprecedented 16 paintings of firearms spanning the nineteenth and twentieth centuries. This rock art provides evidence for early firearms as objects of curiosity and threat to local groups, as well as evidence for later personal ownership and use of such weaponry. Moreover, we argue that the rock art suggests increasing incorporation of firearms into traditional cultural belief and artistic systems over time with Madjedbebe playing a key role in the communication of the cultural meanings behind this new subject matter.Arts, Education & Law Group, School of Humanities, Languages and Social SciencesFull Tex

    GM1 locates to mature amyloid structures implicating a prominent role for glycolipid-protein interactions in Alzheimer pathology

    No full text
    While the molecular mechanisms underlying Alzheimer\u27s disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (AD) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with A beta mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-A beta plaque interactions in the brain. Chemical imaging using mass spectrometry (MS) allows to probe the spatial distribution of lipids and peptides in complex biological tissues comprehensively and at high molecular specificity. As different imaging mass spectrometry (IMS) modalities provide comprehensive molecular and spatial information, we here describe a multimodal ToF-SIMS- and MALDI-based IMS strategy for probing lipid and A beta peptide changes in a transgenic mouse model of AD (tgAPP(ArcSwe)). Both techniques identified a general AD-associated depletion of cortical sulfatides, while multimodal MALDI IMS revealed plaque specific lipid as well as A beta peptide isoforms. In addition, MALDI IMS analysis revealed chemical features associated with morphological heterogeneity of individual A beta deposits. Here, an altered GM1 to GM2/GM3 ganglioside metabolism was observed in the diffuse periphery of plaques but not in the core region. This was accompanied by an enrichment of A beta 1-40arc peptide at the core of these deposits. Finally, a localization of arachidonic acid (AA) conjugated phosphatidylinositols (PI) and their corresponding degradation product, lysophosphatidylinositols (LPI) to the periphery of A beta plaques was observed, indicating site specific macrophage activation and ganglioside processing

    Association of PTHrP levels in CSF with Alzheimer\u27s disease biomarkers

    No full text
    Background: Parathyroid hormone-related protein (PTHrP) is involved in intracellular calcium regulation, neural cell proliferation and synaptic transmission. To date, no studies have been performed to evaluate the potential of PTHrP concentrations in cerebrospinal fluid (CSF) as a biomarker of brain pathophysiology. In this study we evaluated the association between CSF concentrations of PTHrP with the core CSF biomarkers of Alzheimer\u27s disease (AD). Methods: PTHrP and calcium were analysed using validated mass spectrometry based methods in a set of CSF samples that tested positive (n=45) and negative (n=45) for the AD biomarkers, including total tau protein (T-tau), phosphorylated tau protein (P-tau) and amyloid-beta 42 (A beta 42). The measured CSF concentrations of PTHrP and calcium (Ca) were evaluated for association with AD CSF biomarkers. Results: PTHrP and Ca concentrations in CSF samples ranged between 25 and 137 pmol/L and 0.92-1.53 mmol/L, respectively. Higher concentrations of PTHrP were observed in association with increased concentrations of T-tau and P-tau in the AD and the control group; while a stronger correlation was observed in the control group (rho=0.6,
    • …
    corecore