2,193 research outputs found

    Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia

    Full text link
    The orbits of binary stars and planets, particularly eccentricities and inclinations, encode the angular momentum within these systems. Within stellar multiple systems, the magnitude and (mis)alignment of angular momentum vectors among stars, disks, and planets probes the complex dynamical processes guiding their formation and evolution. The accuracy of the \textit{Gaia} catalog can be exploited to enable comparison of binary orbits with known planet or disk inclinations without costly long-term astrometric campaigns. We show that \textit{Gaia} astrometry can place meaningful limits on orbital elements in cases with reliable astrometry, and discuss metrics for assessing the reliability of \textit{Gaia} DR2 solutions for orbit fitting. We demonstrate our method by determining orbital elements for three systems (DS Tuc AB, GK/GI Tau, and Kepler-25/KOI-1803) using \textit{Gaia} astrometry alone. We show that DS Tuc AB's orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Tau's orbit might be misaligned with their respective protoplanetary disks, and the Kepler-25/KOI-1803 orbit is not aligned with either component's transiting planetary system. We also demonstrate cases where \textit{Gaia} astrometry alone fails to provide useful constraints on orbital elements. To enable broader application of this technique, we introduce the python tool \texttt{lofti\_gaiaDR2} to allow users to easily determine orbital element posteriors.Comment: 18 pages, 10 figures, accepted for publication in Ap

    Larval culture of the calico scallop, Argopecten gibbus

    Get PDF
    Mature calico scallops, Argopecten gibbus, collected from the grounds off Cape Kennedy, Florida, were induced to spawn in the laboratory. Fertilized eggs were reared to postlarvae in sea water of 23° C ± 2.0° C at a salinity of 35 %o. The external morphology of eggs and developing larval stages are described

    The Impact of Stellar Multiplicity on Planetary Systems, I.:The Ruinous Influence of Close Binary Companions

    Get PDF
    The dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of 382 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. Among the full sample of 506 candidate binary companions to KOIs, we super-resolve some binary systems to projected separations of 0.4; we instead only found 23 companions (a 4.6σ deficit), many of which must be wider pairs that are only close in projection. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut=4723+59{a}_{\mathrm{cut}}={47}_{-23}^{+59} au, the planet occurrence rate in binary systems is only Sbin=0.340.15+0.14{S}_{\mathrm{bin}}={0.34}_{-0.15}^{+0.14} times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion

    Low temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers

    Full text link
    We report on a detailed analysis of the superconducting properties of boron-doped silicon films grown along the 001 direction by Gas Immersion Laser Doping. The doping concentration cB has been varied up to approx. 10 at.% by increasing the number of laser shots to 500. No superconductivity could be observed down to 40mK for doping level below 2.5 at.%. The critical temperature Tc then increased steeply to reach 0.6K for cB = 8 at%. No hysteresis was found for the transitions in magnetic field, which is characteristic of a type II superconductor. The corresponding upper critical field Hc2(0) was on the order of 1000 G, much smaller than the value previously reported by Bustarret et al. in Nature (London) 444, 465 (2006).Comment: 4 pages including 4 figures, submitted to PRB-Rapid Communicatio

    DISCOVERY OF A LOW-LUMINOSITY, TIGHT SUBSTELLAR BINARY AT THE T/Y TRANSITION

    Get PDF
    We have discovered that the brown dwarf WISEJ014656.66+423410.0 is a close binary (0.0875±\pm0.0021 arcsec, 0.930.16+0.12^{+0.12}_{-0.16} AU) from Keck laser guide star adaptive optics imaging. Our photometry for this system reveals that both components are less luminous than those in any known substellar binary. Combining a new integrated-light spectrum (T9p) and resolved YJH-band photometry from Keck allows us to perform spectral decomposition and assign component types of T9 and Y0. Many of the unusual features in the spectrum might be explained by high surface gravity: Y-band peak broadened to the blue; J-band peak broadened to the red; H-band peak shifted slightly to the red; and red Y-J colors. Interestingly, the very low component luminosities imply that the T9 primary is unexpectedly cold (TeffT_{\rm eff} = 345±\pm45 K assuming an age of 10 Gyr), making it \approx100 K cooler than any other late-T dwarf and comparable to Y dwarfs. One intriguing explanation for this apparent discrepancy is that the J- and H-band spectral features that trigger the transition from T to Y spectral types are highly gravity-dependent. This can be tested directly in the very near future by orbit monitoring. We constrain the orbital period to be \lesssim10 yr by combining evolutionary model-based mass estimates for the components (\approx12-21 MJupM_{\rm Jup}, 1σ\sigma at 10 Gyr) with a statistical constraint on the semimajor axis (\lesssim1.3 AU). Such a period is shorter than any other known T/Y transition binary, meaning that WISEJ0146+4234AB will likely yield a dynamical mass within the next few years.Comment: Accepted to ApJ (2015 Feb 14); 24 pages, 4 figures, 5 table

    ADAPTIVE OPTICS IMAGING OF VHS 1256-1257: A LOW MASS COMPANION TO A BROWN DWARF BINARY SYSTEM

    Get PDF
    Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age 300\sim300 Myr the A and B components each have a mass of 64.62.0+0.8 MJup64.6^{+0.8}_{-2.0}~M_{\mathrm{Jup}}, and the b component has a mass of 11.21.8+9.711.2^{+9.7}_{-1.8}, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of 17.2±2.617.2\pm2.6 pc and the parallax distance of 12.7±1.012.7\pm1.0 pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particular, the mass of the b component increases well above the deuterium burning limit to 35 MJup\sim35~M_{\mathrm{Jup}} and the mass of each binary component increases to 7317+20 MJup73^{+20}_{-17}~M_{\mathrm{Jup}}. At 17.1 pc, the UVW kinematics of the system are consistent with membership in the AB~Dor moving group. The architecture of the system resembles a hierarchical stellar multiple suggesting it formed via an extension of the star-formation process to low masses. Continued astrometric monitoring will resolve this distance uncertainty and will provide dynamical masses for a new benchmark system.Comment: Accepted to ApJ

    The Impact of Bayesian Hyperpriors on the Population-Level Eccentricity Distribution of Imaged Planets

    Full text link
    Orbital eccentricities directly trace the formation mechanisms and dynamical histories of substellar companions. Here, we study the effect of hyperpriors on the population-level eccentricity distributions inferred for the sample of directly imaged substellar companions (brown dwarfs and cold Jupiters) from hierarchical Bayesian modeling (HBM). We find that the choice of hyperprior can have a significant impact on the population-level eccentricity distribution inferred for imaged companions, an effect that becomes more important as the sample size and orbital coverage decrease to values that mirror the existing sample. We reanalyse the current observational sample of imaged giant planets in the 5-100 AU range from Bowler et al. (2020) and find that the underlying eccentricity distribution implied by the imaged planet sample is broadly consistent with the eccentricity distribution for close-in exoplanets detected using radial velocities. Furthermore, our analysis supports the conclusion from that study that long-period giant planets and brown dwarf eccentricity distributions differ by showing that it is robust to the choice of hyperprior. We release our HBM and forward modeling code in an open-source Python package, ePop!, and make it freely available to the community.Comment: 18 pages, 11 figures. Accepted for publication in The Astronomical Journa
    corecore