399 research outputs found
Dips in Partial Wave Amplitudes from Final State Interactions
We consider the dip-peak structures in the J=0 partial wave amplitudes for
processes \gamma\gamma\rightarrow W^+W^-~
\mbox{and}~\gamma\gamma,gg\rightarrow t\overline{t} taking into account the
corresponding Born term process and the rescattering process where the
intermediate state is rescattered through the exchange of Higgs resonance state
in the direct channel.Comment: 9 pages, CPP-93-21, 6 figures not include
Bose-Einstein Condensates in Optical Quasicrystal Lattices
We analyze the physics of Bose-Einstein condensates confined in 2D
quasi-periodic optical lattices, which offer an intermediate situation between
ordered and disordered systems. First, we analyze the time-of-flight
interference pattern that reveals quasi-periodic long-range order. Second, we
demonstrate localization effects associated with quasi-disorder as well as
quasiperiodic Bloch oscillations associated with the extended nature of the
wavefunction of a Bose-Einstein condensate in an optical quasicrystal. In
addition, we discuss in detail the crossover between diffusive and localized
regimes when the quasi-periodic potential is switched on, as well as the
effects of interactions
New Lower Bound on Fermion Binding Energies
We derive a new lower bound for the ground state energy of N
fermions with total spin S in terms of binding energies of (N-1) fermions. Numerical examples are provided for some simple
short-range or confining potentials.Comment: 4 pages, 1 eps figur
Cavity-induced temperature control of a two-level system
We consider a two-level atom interacting with a single mode of the
electromagnetic field in a cavity within the Jaynes-Cummings model. Initially,
the atom is thermal while the cavity is in a coherent state. The atom interacts
with the cavity field for a fixed time. After removing the atom from the cavity
and applying a laser pulse the atom will be in a thermal state again. Depending
on the interaction time with the cavity field the final temperature can be
varied over a large range. We discuss how this method can be used to cool the
internal degrees of freedom of atoms and create heat baths suitable for
studying thermodynamics at the nanoscale
Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints
Constraints on the parameters in the one- and two-loop pion-pion scattering
amplitudes of standard chiral perturbation theory are obtained from explicitly
crossing-symmetric sum rules. These constraints are based on a matching of the
chiral amplitudes and the physical amplitudes at the symmetry point of the
Mandelstam plane. The integrals over absorptive parts appearing in the sum
rules are decomposed into crossing-symmetric low- and high-energy components
and the chiral parameters are finally related to high-energy absorptive parts.
A first application uses a simple model of these absorptive parts. The
sensitivity of the results to the choice of the energy separating high and low
energies is examined with care. Weak dependence on this energy is obtained as
long as it stays below ~560 MeV. Reliable predictions are obtained for three
two-loop parameters.Comment: 23 pages, 4 figures in .eps files, Latex (RevTex), our version of
RevTex runs under Latex2.09, submitted to Phys. Rev. D,minor typographical
corrections including the number at the end of the abstract, two sentences
added at the end of Section 5 in answer to a referee's remar
A Hybrid Model for QCD Deconfining Phase Boundary
Intensive search for a proper and realistic equations of state (EOS) is still
continued for studying the phase diagram existing between quark gluon plasma
(QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the
strongly interacting matter at finite temperature () and vanishing baryon
chemical potential (). These calculations are of limited use at finite
due to the appearance of notorious sign problem. In the recent past,
we had constructed a hybrid model description for the QGP as well as HG phases
where we make use of a new excluded-volume model for HG and a
thermodynamically-consistent quasiparticle model for the QGP phase and used
them further to get QCD phase boundary and a critical point. Since then many
lattice calculations have appeared showing various thermal and transport
properties of QCD matter at finite and . We test our hybrid
model by reproducing the entire data for strongly interacting matter and
predict our results at finite so that they can be tested in future.
Finally we demonstrate the utility of the model in fixing the precise location,
the order of the phase transition and the nature of CP existing on the QCD
phase diagram. We thus emphasize the suitability of the hybrid model as
formulated here in providing a realistic EOS for the strongly interacting
matter.Comment: 22 pages, 10 figures. corrected version published in Physical Review
D. arXiv admin note: substantial text overlap with arXiv:1201.044
A systematic correlation between two-dimensional flow topology and the abstract statistics of turbulence
Velocity differences in the direct enstrophy cascade of two-dimensional
turbulence are correlated with the underlying flow topology. The statistics of
the transverse and longitudinal velocity differences are found to be governed
by different structures. The wings of the transverse distribution are dominated
by strong vortex centers, whereas, the tails of the longitudinal differences
are dominated by saddles. Viewed in the framework of earlier theoretical work
this result suggests that the transfer of enstrophy to smaller scales is
accomplished in regions of the flow dominated by saddles.Comment: 4 pages, 4 figure
Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})
In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the
K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass
region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500),
f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these
solutions, we determine partial widths for scalar-isoscalar states decaying
into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and
corresponding decay couplings.Comment: Some typos were correcte
Graduate Quantum Mechanics Reform
We address four main areas in which graduate quantum mechanics education can
be improved: course content, textbook, teaching methods, and assessment tools.
We report on a three year longitudinal study at the Colorado School of Mines
using innovations in all these areas. In particular, we have modified the
content of the course to reflect progress in the field in the last 50 years,
used textbooks that include such content, incorporated a variety of teaching
techniques based on physics education research, and used a variety of
assessment tools to study the effectiveness of these reforms. We present a new
assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further
testing of a previously developed assessment tool, the Quantum Mechanics
Conceptual Survey. We find that graduate students respond well to
research-based techniques that have been tested mainly in introductory courses,
and that they learn much of the new content introduced in each version of the
course. We also find that students' ability to answer conceptual questions
about graduate quantum mechanics is highly correlated with their ability to
solve calculational problems on the same topics. In contrast, we find that
students' understanding of basic undergraduate quantum mechanics concepts at
the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic
- …
