7,773 research outputs found
Magnetic Properties of the Novel Low-Dimensional Cuprate Na5RbCu4(AsO4)4Cl2
The magnetic properties of a new compound, Na5RbCu4(AsO4)4Cl2 are reported.
The material has a layered structure comprised of square Cu4O4 tetramers. The
Cu ions are divalent and the system behaves as a low-dimensional S=1/2
antiferromagnet. Spin exchange in Na5RbCu4(AsO4)4Cl2 appears to be
quasi-two-dimensional and non-frustrated. Measurements of the bulk magnetic
susceptibility and heat capacity are consistent with low-dimensional magnetism.
The compound has an interesting, low-entropy, magnetic transition at T = 17 K.Comment: 4 pages, 5 figure
Quantitative study of molecular N_2 trapped in disordered GaN:O films
The structure of disordered GaN:O films grown by ion-assisted deposition is
investigated using x-ray absorption near-edge spectroscopy and Raman
spectroscopy. It is found that between 4 and 21 % of the nitrogen in the films
is in the form of molecular N_2 that interacts only weakly with the surrounding
matrix. The anion to cation ratio in the GaN:O host remains close to unity, and
there is a close correlation between the N_2 fraction, the level of oxygen
impurities, and the absence of short-range order in the GaN:O matrix.Comment: 5 pages, 3 figure
Comparison of Material Properties and Microstructure of Specimens Built Using the 3D Systems Vanguard HS and Vanguard HiQ+HSSLS Systems
The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new control software. The paper compares
the tensile modulus, tensile strength, elongation at break, flexural modulus, Izod impact resistance and microstructure of two batteries of standard specimens built from recycled Duraform
PA (Nylon 12). The first set is built on a Vanguard HS system and the second on the same
system with the HiQ upgrade installed. The upgrade reduces user intervention, decreases total build time and improves surface finish. However, using the default processing parameters,
tensile, flexure and impact properties are all found to decline after the upgrade is installed.Mechanical Engineerin
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Resonant x-ray scattering study on multiferroic BiMnO3
Resonant x-ray scattering is performed near the Mn K-absorption edge for an
epitaxial thin film of BiMnO3. The azimuthal angle dependence of the resonant
(003) peak (in monoclinic indices) is measured with different photon
polarizations; for the channel a 3-fold symmetric oscillation
is observed in the intensity variation, while the scattering
intensity remains constant. These features are accounted for in terms of the
peculiar ordering of the manganese 3d orbitals in BiMnO3. It is demonstrated
that the resonant peak persists up to 770 K with an anomaly around 440 K; these
high and low temperatures coincide with the structural transition temperatures,
seen in bulk, with and without a symmetry change, respectively. A possible
relationship of the orbital order with the ferroelectricity of the system is
discussed.Comment: 14 pages, 4 figure
Recommended from our members
Polyamide Nanocomposites for Selective Laser Sintering
Current polyamide 11 and 12 are lacking in fire retardancy and high strength/high
heat resistance characteristics for a plethora of finished parts that are desired and required
for performance driven applications. It is anticipated that nanomodification of polyamide
11 and 12 will result in enhanced polymer performance, i.e., fire retardancy, high strength
and high heat resistance for polyamide 11 and 12. It is expected that these findings will
expand the market opportunities for polyamide 11 and 12 resin manufacturers.
The objective of this research is to develop improved polyamide 11 and 12 polymers
with enhanced flame retardancy, thermal, and mechanical properties for selective laser
sintering (SLS) rapid manufacturing (RM). A nanophase was introduced into the
polyamide 11 and 12 via twin screw extrusion to provide improved material properties of
the polymer blends. Arkema RILSAN® polyamide 11 molding polymer pellets and
Degussa VESTAMID® L1670 polyamide 12 were examined with three types of
nanoparticles: chemically modified montmorillonite (MMT) organoclays, surface
modified nanosilica, and carbon nanofibers (CNFs) to create polyamide 11 and 12
nanocomposites.
Wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM)
were used to determine the degree of dispersion. Injection molded test specimens were
fabricated for physical, thermal, mechanical properties, and flammability tests. Thermal
stability of these polyamide 11 and 12 nanocomposites was examined by TGA.
Mechanical properties such as tensile, flexural, and elongation at break were measured.
Flammability properties were also obtained using the Cone Calorimeter at an external
heat flux of 50 kW/m2. TEM micrographs, physical, mechanical, and flammability
properties are included in the paper. Polyamide 11 and 12 nanocomposites properties are
compared with polyamide 11 and 12 baseline polymers. Based on flammability and
mechanical material performance, selective polymers including polyamide 11
nanocomposites and control polyamide 11 were cryogenically ground into fine powders
and fabricated into SLS parts.Mechanical Engineerin
Substructural Identification of Flexural Rigidity for Beam-Like Structures
This study proposes a novel substructural identification method based on the Bernoulli-Euler beam theory with a single variable optimization scheme to estimate the flexural rigidity of a beam-like structure such as a bridge deck, which is one of the major structural integrity indices of a structure. In ordinary bridges, the boundary condition of a superstructure can be significantly altered by aging and environmental variations, and the actual boundary conditions are generally unknown or difficult to be estimated correctly. To efficiently bypass the problems related to boundary conditions, a substructural identification method is proposed to evaluate the flexural rigidity regardless of the actual boundary conditions by isolating an identification region within the internal substructure. The proposed method is very simple and effective as it utilizes the single variable optimization based on the transfer function formulated utilizing Bernoulli Euler beam theory for the inverse analysis to obtain the flexural rigidity. This novel method is also rigorously investigated by applying it for estimating the flexural rigidity of a simply supported beam model with different boundary conditions, a concrete plate-girder bridge model with different length of an internal substructure, a cantilever-type wind turbine tower structure with different type of excitation, and a steel box-girder bridge model with internal structural damages.This research was financially supported by the Ministry of
Land, Infrastructure and Transport (MOLIT) of the Korea
government (code 12 Technology Innovation E09)
- …