6,059 research outputs found
Hermiticity and the Cohomology Condition in Topological Yang-Mills Theory
The symmetries of the topological Yang-Mills theory are studied in the
Hamiltonian formalism and the generators of the twisted N=2 superPoincar\'e
algebra are explicitly constructed. Noting that the twisted Lorentz generators
do not generate the Lorentz symmetry of the theory, we relate the two by
extracting from the latter the twisted version of the internal SU(2) generator.
The hermiticity properties of the various generators are also considered
throughout, and the boost generators are found to be non-hermitian. We then
recover the BRST cohomology condition on physical states from representation
theory arguments.Comment: 19 pages, MIT-CTP 223
Fluctuations of the Unruh Temperature
Using the influence functional formalism, the problem of an accelerating
detector in the presence of a scalar field in its ground state is considered in
Minkowski space. As is known since the work of Unruh, to a quantum mechanical
detector following a definite, classical acceleration, the field appears to be
thermally excited. We relax the requirement of perfect classicality for the
trajectory and substitute it with one of {\it derived} classicality through the
criteria of decoherence. The ensuing fluctuations in temperature are then
related with the time and the amplitude of excitation in the detector's
internal degree of freedom.Comment: LATEX, 12 pages + 2 figures (available upon request) MIT-CTP 234
The elusive old population of the dwarf spheroidal galaxy Leo I
We report the discovery of a significant old population in the dwarf
spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO
New Technology Telescope. Studies of the stellar content of Local Group dwarf
galaxies have shown the presence of an old stellar population in almost all of
the dwarf spheroidals. The only exception was Leo I, which alone appeared to
have delayed its initial star formation episode until just a few Gyr ago. The
color-magnitude diagram of Leo I now reveals an extended horizontal branch,
unambiguously indicating the presence of an old, metal-poor population in the
outer regions of this galaxy. Yet we find little evidence for a stellar
population gradient, at least outside R > 2' (0.16 kpc), since the old
horizontal branch stars of Leo I are radially distributed as their more
numerous intermediate-age helium-burning counterparts. The discovery of a
definitely old population in the predominantly young dwarf spheroidal galaxy
Leo I points to a sharply defined first epoch of star formation common to all
of the Local Group dSph's as well as to the halo of the Milky Way.Comment: 4 pages, 3 postscript figures, uses apjfonts.sty, emulateapj.sty.
Accepted for publication in ApJ Letter
Normal-Superfluid Interface Scattering For Polarized Fermion Gases
We argue that, for the recent experiments with imbalanced fermion gases, a
temperature difference may occur between the normal (N) and the gapped
superfluid (SF) phase. Using the mean-field formalism, we study particle
scattering off the N-SF interface from the deep BCS to the unitary regime. We
show that the thermal conductivity across the interface drops exponentially
fast with increasing , where is the chemical potential imbalance.
This implies a blocking of thermal equilibration between the N and the SF
phase. We also provide a possible mechanism for the creation of gap
oscillations (FFLO-like states) as seen in recent studies on these systems.Comment: 4 pages, 3 figure
Black hole entropy and renormalization
Using a new regulator, we examine 't Hooft's approach for evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon. We find that this calculation yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, S={\Cal A}/(4G). Thus our result provides evidence confirming a suggestion by Susskind and Uglum regarding black hole entropy
Remarks on Renormalization of Black Hole Entropy
We elaborate the renormalization process of entropy of a nonextremal and an
extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars
regularization method, in which the regulator fields obey either the
Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics.
The black hole entropy involves only two renormalization constants. We also
discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure
Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal
We present a large area photometric survey of the Ursa Minor dSph. We
identify UMi giant star candidates extending to ~3 deg from the center of the
dSph. Comparison to previous catalogues of stars within the tidal radius of UMi
suggests that our photometric luminosity classification is 100% accurate. Over
a large fraction of the survey area, blue horizontal branch stars associated
with UMi can also be identified. The spatial distribution of both the UMi giant
stars and the BHB stars are remarkably similar, and a large fraction of both
samples of stars are found outside the tidal radius of UMi. An isodensity
contour map of the stars within the tidal radius of UMi reveals two
morphological peculiarities: (1) The highest density of dSph stars is offset
from the center of symmetry of the outer isodensity contours. (2) The overall
shape of the outer contours appear S-shaped. We find that previously determined
King profiles with ~50' tidal radii do not fit well the distribution of our UMi
stars. A King profile with a larger tidal radius produces a reasonable fit,
however a power law with index -3 provides a better fit for radii > 20'. The
existence of UMi stars at large distances from the core of the galaxy, the
peculiar morphology of the dSph within its tidal radius, and the shape of its
surface density profile all suggest that UMi is evolving significantly due to
the tidal influence of the Milky Way. However, the photometric data on UMi
stars alone does not allow us to determine if the candidate extratidal stars
are now unbound or if they remain bound to the dSph within an extended dark
matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Majorana spinors and extended Lorentz symmetry in four-dimensional theory
An extended local Lorentz symmetry in four-dimensional (4D) theory is
considered. A source of this symmetry is a group of general linear
transformations of four-component Majorana spinors GL(4,M) which is isomorphic
to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski
space M(3,3) including superluminal and scaling transformations. Physical
space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the
extended Lorentz symmetry in the M(3,3) space with the physical space-time, a
fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber.
The action is constructed which is invariant with respect to both general 4D
coordinate and local GL(4,M) spinor transformations. The components of the
metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian
metric and two extra complex fields: 4D vector and scalar ones. These extra
fields describe in the general case massive particles interacting with an extra
U(1) gauge field and weakly interacting with ordinary particles, i.e.
possessing properties of invisible (dark) matter.Comment: 24 page
- …
