38,193 research outputs found

    Measurement in control and discrimination of entangled pairs under self-distortion

    Full text link
    Quantum correlations and entanglement are fundamental resources for quantum information and quantum communication processes. Developments in these fields normally assume these resources stable and not susceptible of distortion. That is not always the case, Heisenberg interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e. g. for quantum computation or quantum cryptography). Experimental work shows how to produce entangled spin qubits in quantum dots and electron gases, so its identification and control are crucial for later applications. The presence of parasite magnetic fields modifies the expected properties and behavior for which the pair was intended. Quantum measurement and control help to discriminate the original state in order to correct it or, just to try of reconstruct it using some procedures which do not alter their quantum nature. Two different kinds of quantum entangled pairs driven by a Heisenberg Hamiltonian with an additional inhomogeneous magnetic field which becoming self-distorted, can be reconstructed without previous discrimination by adding an external magnetic field, with fidelity close to 1 (with respect to the original state, but without discrimination). After, each state can be more efficiently discriminated. The aim of this work is to show how combining both processes, first reconstruction without discrimination and after discrimination with adequate non-local measurements, it's possible a) improve the discrimination, and b) reprepare faithfully the original states. The complete process gives fidelities better than 0.9. In the meanwhile, some results about a class of equivalence for the required measurements were found. This property lets us select the adequate measurement in order to ease the repreparation after of discrimination, without loss of entanglement.Comment: 6 figure

    The Bregman chord divergence

    Full text link
    Distances are fundamental primitives whose choice significantly impacts the performances of algorithms in machine learning and signal processing. However selecting the most appropriate distance for a given task is an endeavor. Instead of testing one by one the entries of an ever-expanding dictionary of {\em ad hoc} distances, one rather prefers to consider parametric classes of distances that are exhaustively characterized by axioms derived from first principles. Bregman divergences are such a class. However fine-tuning a Bregman divergence is delicate since it requires to smoothly adjust a functional generator. In this work, we propose an extension of Bregman divergences called the Bregman chord divergences. This new class of distances does not require gradient calculations, uses two scalar parameters that can be easily tailored in applications, and generalizes asymptotically Bregman divergences.Comment: 10 page

    Decoherence induced by an interacting spin environment in the transition from integrability to chaos

    Get PDF
    We investigate the decoherence properties of a central system composed of two spins 1/2 in contact with a spin bath. The dynamical regime of the bath ranges from a fully integrable integrable limit to complete chaoticity. We show that the dynamical regime of the bath determines the efficiency of the decoherence process. For perturbative regimes, the integrable limit provides stronger decoherence, while in the strong coupling regime the chaotic limit becomes more efficient. We also show that the decoherence time behaves in a similar way. On the contrary, the rate of decay of magnitudes like linear entropy or fidelity does not depend on the dynamical regime of the bath. We interpret the latter results as due to a comparable complexity of the Hamiltonian for both the integrable and the fully chaotic limits.Comment: Submitted to Phys. Rev.

    Maximal violation of Bell inequality for any given two-qubit pure state

    Full text link
    In the case of bipartite two qubits systems, we derive the analytical expression of bound of Bell operator for any given pure state. Our result not only manifest some properties of Bell inequality, for example which may be violated by any pure entangled state and only be maximally violated for a maximally entangled state, but also give the explicit values of maximal violation for any pure state. Finally we point out that for two qubits systems there is no mixed state which can produce maximal violation of Bell inequality.Comment: 3 pages, 1 figure

    Relation between Tcc,bbT_{cc,bb} and Xc,bX_{c,b} from QCD

    Full text link
    We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of TccT_{cc} and X(3872) assuming that they are respectively described by the D−D∗D-{D}^* and D−Dˉ∗D-\bar{D}^* molecular currents. We found (within our approximation) that the masses of these two states are almost degenerate. Since the pion exchange interaction between these mesons is exactly the same, we conclude that if the observed X(3872) meson is a DDˉ∗+c.c.D\bar{D}^*+c.c. molecule, then the DD∗DD^* molecule should also exist with approximately the same mass. An extension of the analysis to the bb-quark case leads to the same conclusion. We also study the SU(3) breakings for the TQQs/TQQT^s_{QQ}/T_{QQ} mass ratios. Motivated by the recent Belle observation of two ZbZ_b states, we revise our determination of XbX_b by combining results from exponential and FESR sum rules.Comment: revised version to appear on Phys. Lett.

    Calculation of laminar boundary layer-shock wave interaction on cooled walls by the method of integral relations

    Get PDF
    Calculation of laminar boundary layer shock wave interaction on cooled walls by method of integral relatio

    Fully-Balanced Heat Interferometer

    Get PDF
    A tunable and balanced heat interferometer is proposed and analyzed. The device consists of two superconductors linked together to form a double-loop interrupted by three Josephson junctions coupled in parallel. Both superconductors are held at different temperatures allowing the heat currents flowing through the structure to interfere. As we show here, thermal transport is coherently modulated through the application of a magnetic flux. Furthermore, such modulation can be tailored at will through the application of an extra control flux. In addition we show that, provided a proper choice of the system parameters, a fully balanced interferometer is obtained. The latter means that the phase-coherent part of heat current can be controlled to the extent of being fully suppressed. Such a device allows for a versatile operation appearing, therefore, as an attractive key to the onset of low-temperature coherent caloritronic circuits

    Loss-tolerant operations in parity-code linear optics quantum computing

    Get PDF
    A heavy focus for optical quantum computing is the introduction of error-correction, and the minimisation of resource requirements. We detail a complete encoding and manipulation scheme designed for linear optics quantum computing, incorporating scalable operations and loss-tolerant architecture.Comment: 8 pages, 6 figure
    • 

    corecore