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A heavy focus for optical quantum computing is the introduction of error correction, and the minimization
of resource requirements. We detail a complete encoding and manipulation scheme designed for circuit-model
linear optics quantum computing, incorporating scalable operations and loss-tolerant architecture. We also
calculate loss thresholds for the gate systems described, with an efficiency of 83% required for the single-qubit
operations, and 90% for the two-qubit controlled-NOT gate.
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I. INTRODUCTION

Linear optics is a highly promising architecture in the
drive to produce a quantum computer. It was first shown by
Knill, Laflamme, and Milburn �KLM� �1� that linear optics
was a viable system for implementing scalable quantum
computing �2�. Further work by various researchers has pro-
duced experimental demonstrations of some of the basic
components required by linear optics quantum computing
�LOQC� �3–5�. Another focus of work in the field is on im-
proving the efficiency with which computation could be per-
formed. An alternative scheme put forward by Nielsen �6�
introduced the use of the cluster-state model �7� in LOQC. A
streamlined version of this scheme can be found in the paper
by Browne and Rudolph �8�, which significantly decreases
the size of the overheads required for computing, when com-
pared with the original KLM design. More recently, there has
been research done on the task of introducing error correc-
tion into the cluster-state model �9–11�. For a more extensive
overview of the field of LOQC, see �12�.

We have previously presented an approach to loss-tolerant
active memory based on an incremental parity encoding
�13,14�. Parity encoding was used in the original KLM pro-
posal to protect against both teleporter failures �i.e., the non-
determinism of the gates� and photon loss. By using parity
encoding but reencoding incrementally �instead of by concat-
enation� we are able to obtain the reduction in overheads
characteristic of the cluster-state approach while retaining
the circuit model and parity encoding of KLM. With the
addition of a layer of redundancy encoding, this allowed for
recovery from photon loss.

In this paper we will present a universal set of gates for
use with a parity-based loss-tolerant code, to allow scalable
quantum computing. We will show that these gates maintain
loss tolerance during operation, and calculate the loss-
tolerant thresholds for computation within the scheme.
Though our techniques for detecting and correcting loss are
themselves also subject to loss, above a particular threshold
efficiency the effect of loss can be negated to arbitrary accu-
racy, making the computation loss tolerant.

In Sec. II we shall describe the structure of the encoding
that allows us to recover from loss, and the gate operations

available to us in designing a system for universal quantum
computation. In this case, we assume the use of photon
sources and detectors, linear optical elements, and fast feed-
forward. Section III details the operations that will form a
universal set of gates on the logical qubits. We demonstrate
that using reencoding to perform these gates allows recovery
from losses that occur while attempting them. Finally, in Sec.
IV, we calculate the loss threshold for general computation,
under this set of operations. These calculations deal only
with loss errors, and do not consider other classes of error,
such as depolarization. We have focused on qubit loss, as it is
a dominant source of error in optics, however, it should be
noted that by neglecting other forms of error we are assum-
ing that photon loss is by far the dominant source of error
�15�.

II. ENCODING

We will deal with qubits in three different tiers of encod-
ing: �i� physical encoding, �ii� parity encoding, and �iii� re-
dundant encoding. At the first tier are the basic physical
states that we will use to construct qubits. These will be the
polarization states of a photon so that �0���H� and �1�
��V�. The advantage of this choice in optics, is that we can
perform any single physical-qubit unitary deterministically
with passive linear optical elements. Of course gates between
different physical qubits become difficult and in LOQC these
are typically nondeterministic. The function of the parity en-
coding is to allow near-deterministic operations and to con-
vert photon loss to heralded bit-flip errors. However, al-
though the parity code makes detection of loss possible, it is
necessary to add a layer of redundant encoding to allow re-
covery from these errors.

A. Parity encoding

We have shown how this class of code may be imple-
mented on an arbitrary number of qubits �13�. In this paper
the notation ����n� will be used to represent a logical qubit ���
parity encoded across n distinct physical modes each con-
taining one photon. We describe these individual photons as
the physical qubits that make up the system. The physical
qubits also correspond to the first level of encoding.

A parity encoding across n photons is given by

�0��n� � �� + ��n + �− ��n�/�2,*ahayes@physics.uq.edu.au
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�1��n� � �� + ��n − �− ��n�/�2, �1�

where �± �= ��0�± �1�� /�2. The �0��n� and �1��n� states have
only even- or odd-parity terms, respectively. A computational
basis measurement of any one of the physical qubits will
merely reduce the level of the parity encoding by one, with-
out losing the logical qubit. A bit-flip correction may be
needed dependent on the measurement result.

B. Gates at the parity level

The logical gates described in KLM were based on using
concatenation to build up a very large resource state, and
then teleporting the logical qubits in order to apply the gate
operation. This method also allowed for partial loss protec-
tion to be built into the gates �16�, but the resource costs
were extremely high. Our alternative scheme �13�, based on
the same code, uses reencoding to perform gates and has a
reduced resource cost as a result.

The operation that allows us to teleport qubits or entangle
states is the partial Bell-state measurement �17,18�. For qu-
bits encoded in the polarization modes of a photon, this op-
eration is done by mixing two physical qubits on a polarizing
beam splitter followed by measurement in the diagonal-
antidiagonal basis. It is successful when one photon is de-
tected in each arm of the beam splitter’s output. If both pho-
tons appear at one of the outputs, the operation has failed.
The probability of success for the operation is 1 /2. When
successful it projects onto the Bell state �00�± �11�, otherwise
it projects onto the separable states �01� and �10�, measuring
the qubits in the computational basis. The operation can be
used to attach physical qubits to a parity-encoded state. This
is referred to as type-II fusion �f II� �8� �Fig. 1�.

There are two operations which are easily performed on
parity-encoded states. One is a rotation by an arbitrary
amount around the x axis of the Bloch sphere �i.e., X�

=cos�� /2�I− i sin�� /2�X�, which can be performed by apply-
ing that operation to any of the physical qubits; and the other
is a Z operation, which can be performed by applying Z to all
the physical qubits �since the odd-parity states will acquire
an overall phase flip�. This means that all the Pauli opera-
tions can be performed deterministically. The remaining
gates needed in order to achieve a universal gate set are a Z90
and a controlled-NOT �CNOT� gate. These can be efficiently
performed on the parity-encoded states through reencoding.

Reencoding is done by applying a type-II fusion between
a physical qubit from the code state and a resource of �0��n+2�.
The result is

f II����m��0��n+2� → 	����m+n� �success�
����m−1��0��n+1� �failure�

.
 �2�

When this is successful, the length of the parity qubit is
extended by n �two qubits are consumed in the operation�. A
phase-flip correction may be necessary depending on the
measurement results. Failure causes the physical qubit from
the parity-encoded state to be measured, lowering the level
of encoding by one. The resource state is left in the state
�0��n+1� and can be reused. Full details of how to enact the Z90
and CNOT gates can be found in Gilchrist et al. �19�.

C. Redundant encoding

The full loss-tolerant encoding begins with a parity code
of length n, and concatenates it with a redundancy code of
length q. Thus at the highest level our logical qubits are
given by

���L = ��0�1
�n��0�2

�n�, . . . , �0�q
�n� + ��1�1

�n��1�2
�n�, . . . , �1�q

�n�

= ��

q

�0��n� + ��

q

�1��n� = ��0��n,q� + ��1��n,q�, �3�

where �q indicates the tensor product of q such states.
It turns out to be useful to build the following resource

state:

�0��0��n,q� + �1��1��n,q�. �4�

We can create an “encoder” gate that correctly encodes from
a parity qubit to a full redundancy qubit by simply fusing the
resource state above onto the parity qubit. We attempt type-II
fusion between this resource and the parity qubit ����n�, re-
peating until successful �on average, twice� giving the
�phase-flip corrected� result

���0��n−k��0��n,q� + �1��n−k��1��n,q��

+ ���1��n−k��0��n,q� + �0��n−k��1��n,q�� , �5�

where 0�k�n−1 is the number of unsuccessful attempts
made before fusion was achieved. This state is made up of
qn “new” photons introduced by the resource and n−k of the
“old” photons that made up the parity qubit. By measuring
the old photons in the computational basis and making a bit
flip �on all-new parity qubits if needed� we obtain the ex-
pected encoded state �Eq. �3��.

Figure 2 shows one method of representing these en-
tangled qubit states diagrammatically, which is useful for
visualizing resource states. The redundant qubits can also be
represented in the circuit model, as shown in Fig. 3.

D. Active memory circuit

The identity operation on the encoded state acts to detect
and correct loss errors that may have occurred. Regularly
performing this check can protect the quantum information
from loss �14�.

FIG. 1. This is the optical layout for a type-II fusion gate. It
enacts a partial Bell measurement on two input qubits, acting as an
entangling gate with a 50% probability of success.
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In this operation, one of the constituent parity qubits is
sent into the encoder described earlier. With arbitrarily high
probability, the encoder either successfully reencodes the
parity qubit as a full redundancy state, or it detects a loss. If
a loss is detected, measurements in the diagonal basis
�0��n�± �1��n� can be performed on the remaining constituents
of the parity qubit to disentangle it from the rest of the state.
Once the logical state is no longer entangled with the lost
photon, the encoding operation may be reattempted.

When the encoder succeeds, diagonal basis measurements
can be used to remove the rest of the original parity qubits
from the entanglement. In each case, after disentangling, it
may be necessary to apply a phase flip to return the logical
qubit to the state in Eq. �3�. Higher levels of loss can be
tolerated by increasing the size of the redundancy code. For
a redundancy code of size q, it is possible to tolerate loss on
up to q−1 of the parity qubits, with the state being fully
reencoded from the remaining parity qubit.

As an example, a state encoded across 132 qubits �n=6,
q=22� with a 5% loss rate per physical qubit can be used for
any logical single-qubit operation �including the identity op-
eration used for active memory� with a 97% chance of suc-
cess.

III. LOGICAL GATES IN LOSS-TOLERANT ENCODING

To achieve loss-tolerant quantum computing, the next step
is to incorporate a full set of universal gates into the loss-

tolerant memory scheme described above. We already have a
universal set of gates at the level of the parity encoding �19�,
and these will be the basis for our development of gates for
the loss-tolerant code. The key lies in finding an implemen-
tation of a universal set of gates that can be applied effi-
ciently to qubits in this loss-tolerant encoding.

It is also necessary to ensure that the protection against
loss is not compromised by these operations. As a logical
operation typically consists of a series of gates enacted on
physical qubits, it is possible for losses to occur and be de-
tected during this process. However, if the component gates
have taken the logical qubit out of the code space, it may no
longer be possible to correct an error. This is why it is nec-
essary to design logical operations that will not compromise
the integrity of the code at any point.

In the parity encoding, we are able to perform arbitrary
rotations about the x axis �X��, 90° rotations about the z axis
�Z90�, and CNOT gates between qubits. These are the funda-
mental operations that make up a universal set at that level of
encoding. Moving to the redundancy code, it can be seen that
Z� rotations on a single parity qubit apply to the entire code,
but that performing X� rotations would, in general, be sig-
nificantly more difficult. Consequently, we will focus on
implementing �Z�� and �X90� at the redundancy level. How-
ever, all the Pauli gates may be performed deterministically
at this level, as at the parity level of encoding.

A. Z� rotation

Although performing an arbitrary Z� rotation on a logical
qubit requires merely a Z� rotation on a single parity qubit
within the state, such Z� rotations on the parity qubits are not
trivial to perform. To enact a Z� rotation on a parity qubit
using the set of gates described in �19� would require a
couple of steps, during which the logical qubit is not always
in a code state, and hence not properly protected from photon
loss. To avoid this problem, it is necessary to change the
procedure for doing an arbitrary Z� rotation.

Consider a general redundancy qubit ����n,q�.

����n,q� = ��0��n,q� + ��1��n,q�

= ��0��n,q−1���0�A
�n−1��0�B + �1�A

�n−1��1�B�

+ ��1��n,q−1���1�A
�n−1��0�B + �0�A

�n−1��1�B� . �6�

We will require a resource state �R1� to perform a logical Z�

of the form

�R1� = �0��n+1� = �0�C�0��n� + �1�C�1��n�. �7�

Step 1 is to perform a Z� rotation on a single physical qubit
from the redundancy state �qubit B� as follows:

��1� = ��0��n,q−1���0�A
�n−1��0�B + ei��1�A

�n−1��1�B�

+ ��1��n,q−1���1�A
�n−1��0�B + ei��0�A

�n−1��1�B� . �8�

Step 2, a type-II fusion gate is performed between qubit B
and a component qubit of the resource state �qubit C�. The
fusion acts to reencode the state from the single qubit we
have rotated.

FIG. 2. Diagram illustrating the entanglement of a redundantly
encoded qubit.

FIG. 3. The multiple layers of encoding represented in the cir-
cuit model. The logical qubit is redundantly encoded as a set of
parity qubits. Each parity qubit is in turn encoded across multiple
physical qubits.
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��2� = ���0��n,q−1����0�A
�n−1��0��n� + ei��1�A

�n−1��1��n��

+ ���1��n,q−1����1�A
�n−1��0��n� + ei��0�A

�n−1��1��n�� . �9�

Step 3 is to measure in the computational basis the remainder
of the parity qubit �A�. In the event that an odd parity is
measured, an X gate on the newly added parity qubit is re-
quired as a correction �Fig. 4�.

�0�A
�n−1���2�: ��3� = ��0��n,q−1��0��n� + ��1��n,q−1�ei��1��n�

= ��0��n,q� + ei���1��n,q�, �10�

�1�A
�n−1���2�: ��4� = ei���0��n,q−1��1��n� + ��1��n,q−1��0��n�,

�11�

X��4�: ��5� = ��0��n,q� + e−i���1��n,q�. �12�

It can be seen that the result of an odd-parity measurement is
a rotation of the form Z−�. In this case the logical gate must
be reattempted, using Z2�. It is worth noting that the logical
Z180 operation can be performed deterministically, and hence
that a Z90 gate would only need to be attempted once regard-
less of the outcome of the measurement.

For a general Z� gate, an average of two attempts would
be required. The advantage this method holds for our pur-
poses is that the redundancy qubit will always be left in a
code state, maintaining the protection against loss.

B. X90 rotation

For a universal set of gates, an X90 gate is also required.
To enact the X90 gate, the operation is performed on one of
the component physical qubits. It is then possible to reen-
code from this physical qubit in a similar manner to that used
for the Z� gate. Measurement of the old qubits will once
again allow us to determine an appropriate set of corrections.

As before, we begin by considering a general redundancy
qubit ����n,q� �Eq. �6��. A larger resource state �R2� is required
for the logical X90 gate as follows:

�R2� = �0�C�0��n,q� + �1�C�1��n,q�. �13�

We then proceed as before, step 1 being an X90 rotation on
one component qubit �B�. Step 2 is to perform a fusion gate

between that qubit and the qubit labeled as C in the resource
state. In step 3, it is necessary to measure all the old qubits
which made up the original redundancy state. Those qubits in
the parity state from which the rotated qubit came, �A�, are
measured in the computational basis. All others, �D�, are
measured in the diagonal basis. Corrections will depend on
the overall parity of the qubits measured computationally,
and on whether an odd number of the other parity qubits are
measured in the �−� state.

The possible states after measurement are

�0�A�+ �D���: ��6� = �� − i���0��n,q� − i�� + i���1��n,q�,

�1�A�+ �D���: ��7� = �� − i���0��n,q� − i�� + i���1��n,q�,

�0�A�− �D���: ��8� = �� − i���0��n,q� + i�� + i���1��n,q�,

�1�A�− �D���: ��9� = �� − i���0��n,q� + i�� + i���1��n,q�.

�14�

Accordingly, we may require a logical X gate, a logical Z
gate, or both in order to correct the resulting state. Once any
necessary corrections are performed, we are left with a re-
dundancy state on which the X90 operation has been success-
fully applied.

C. Logical CNOT gate

It was explained earlier in this paper that a logical CNOT

gate could be enacted on a parity qubit by a process of en-
coding. The CNOT gate is performed between two redun-
dancy qubits, ��� and ���. Here ��� is the control and ��� is
the target.

���L = ��0��n,q� + ��1��n,q�, �15�

���L = ��0��n,q� + ��1��n,q�. �16�

The logical CNOT gate is performed as an iterative process,
with a parity-level CNOT performed for each parity qubit in
���. Each of these parity-level CNOT gates will use an arbi-
trary parity qubit from ��� as its target input �Fig. 5�.

We use the following resource for each iteration:

�R3� = �0�C�0��n���0��m��0�D + �1��m��1�D�

+ �1�C�1��n���1��m��0�D + �0��m��1�D� , �17�

where m= �n /2�. It consists of two parity qubits with a CNOT

already performed between them. The target parity qubit m is
shorter since reencoding is not required on the second logical
qubit.

Step 1 of the process is then to fuse a member of the
selected parity qubit from ��� with qubit C in the resource
�R3�.

If this is successful, step 2 is to measure the remaining
original physical qubits in the parity state, to complete the
reencoding. If a loss is detected anywhere up to this point,
we disentangle the chosen parity qubit and the resource from
the rest of the ��� state using diagonal basis measurements.
This allows us to recover and reattempt the process.

FIG. 4. �Color online� The Z±� operation.
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In step 3, perform a fusion gate between qubit D in the
resource and a physical qubit taken from ���. To recover
from a loss, should one occur during this fusion, we disen-
tangle the resource from ��� by making diagonal basis mea-
surements on it, and do the same for the parity qubit in ���
on which we have acted. Once again, Z and/or X gates may
be required as corrections on both qubits depending on the
outcome of the measurements. These Pauli gates can be ap-
plied deterministically to parity or redundancy states. To per-
form the full logical CNOT, this process is iterated for each
parity qubit in ���.

These encoding-based gate operations continually replace
the photons used for the logical qubits, and the old photons
are measured, identifying any losses that arise. In this way,
loss detection and correction are continually applied during
computation.

IV. LOSS-TOLERANT THRESHOLDS

In order for the encoding to be useful in a scalable quan-
tum computing scheme, it is necessary to show that a loss
threshold exists. If the loss is below this threshold, it is pos-
sible to drive the probability of failure arbitrarily close to
zero by increasing the size of the code. We will first summa-
rize the threshold calculation for the identity operation, as
presented in our previous paper �14�. We then present a re-
vised threshold for general computation, using the logical
gate operations we have described.

A. Loss-tolerance threshold for the active memory

The active memory scheme is used to protect an encoded
logical qubit �	��n,q�, by regularly reencoding it using the
resource given in Eq. �4�. We begin by considering the prob-
ability of loss for each photon. The efficiency of the photon
source will be labeled 
s, and the efficiency of the detectors
will be 
d. We will use 
m to indicate the memory efficiency,
which is the probability a photon will not be lost during the
time it is in memory, in-between reencoding cycles. This
means that the probability of detecting a new photon, from a

resource state, is 
2=
s
d, and the probability of detecting
an old photon, from the code state, is 
1=
s
m
d. Note that
fusing a resource onto a logical qubit will succeed or fail
with probability 
1
2 /2 and detect a photon loss with prob-
ability 1−
1
2.

In calculating the loss-tolerant threshold for the encoding,
we consider the possible outcomes of an attempt to reencode
the state. For a given parity qubit in the overall state, there
are three possible outcomes when attempting to reencode
from it.

The first possible outcome is successful reencoding with-
out loss. This occurs when the fusion is successful on one of
the first n−1 physical qubits in the parity state, and the re-
mainder are measured in the computational basis without
loss. The probability for this is

PQs = �
i=1

n−1 1

2

1
2�i


1
n−i. �18�

Note that if only one component qubit remains in the parity
state, we instead measure it in the diagonal basis to disen-
tangle it, and begin again with another parity qubit from the
overall state.

The second outcome that can occur is total failure. This
can result from a long series of losses and/or fusion failures.
The probability for total failure is

Pf f = �
j=1

n−1 1

2

1
2� j−1

�1 − 
1
2��1 − 
1�n−j

+ R�
j=0

n−2 1

2

1
2� j+1

�
k=0

n−2−j


1
k�1 − 
1�n−1−j−k

+ 1

2

1
2�n−1

�1 − 
1� , �19�

R = �
k=1

q q

k
��1 − 
2�kn�1 − �1 − 
2�n�q−k. �20�

Here R is the probability of failing to recover via measure-
ments on the new resource qubits. This can occur when pho-
ton loss is detected after a fusion has been performed, and
attempts to disentangle by measuring components of the
original parity qubit have proven unsuccessful.

The third possibility is that of recovery after partial fail-
ure. The probability of this can be calculated from the pre-
vious two equations: PQf =1− PQs− Pf f. We can tolerate this
outcome occurring up to q−1 times when attempting to re-
encode. Therefore, the total probability for successfully re-
encoding is

PE = �
j=0

q−1

PQf
j PQs�1 − �1 − 
1�n�q−1−j , �21�

where the �1− �1−
1�n�q−1−j factor occurs because it is nec-
essary to disentangle the remainder of the original state once
the chosen parity qubit has been successfully reencoded.

There are two parameters that can be adjusted to increase
the size of the code: q, the number of parity qubits in the

FIG. 5. �Color online� An iteration of the CNOT operation for one
parity qubit.
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state, and n, the length of each parity qubit. There is an
optimal relationship between these two parameters that
maximizes the probability of success PE, dependent on the
size of the code and the loss rate. For the probability PE to
approach one for large encodings, it is necessary to remain
close to this optimum. The optimal relationship can be found
by solving d

dq PE=0 for q in terms of n. This relationship is
shown in Fig. 6.

In these calculations, we assumed an equally high error
rate in all parts of the circuit �
s=
m=
d=
�. Using the
optimal encoding, we found numerically that PE can be
driven arbitrarily close to one when 
�0.82. This is illus-
trated in Fig. 7.

B. Loss-tolerance threshold for computation

The thresholds for the single-qubit logical gates are the
same as the threshold for the identity �memory� case, due to
the strong similarity between the gate operations and the
reencoding used in the active memory. The Z� operation uses
smaller resources, and as such has a slightly higher probabil-
ity of success, but this difference becomes vanishingly small
for large code sizes. This results in it having the same thresh-
old as the X90 operation, and the identity. The CNOT gate is
the most complicated of the universal set of gates we have

developed, and we would expect it to be the most vulnerable
to loss.

The probability of successfully performing our CNOT gate
without loss can be evaluated by considering three possible
outcomes for each iteration in the procedure. These consist
of a no-progress outcome, in which a CNOT between parity
qubits fails due to loss or measurement errors, a progress
outcome, in which the CNOT is successful, and total failure,
in which one or both logical qubits are lost. There are several
ways in which a no-progress outcome can occur. These
events and their probability are listed below.

�1� Fusion attempts are unsuccessful, and the chosen par-
ity qubit is disentangled from the rest of the state as follows:

M1 = 1

2

1
2�n−1


1. �22�

�2� A loss occurs during a fusion attempt, and the parity
qubit is disentangled as follows:

M2 = �
i=0

n−2 1

2

1
2�i

�1 − 
1
2��1 − �1 − 
1�n−i−1� . �23�

�3� A loss occurs while measuring off qubits after a suc-
cessful fusion, and the parity qubit is disentangled as fol-
lows:

M3 = �
i=1

n−2 1

2

1
2�i

�
j=0

n−i−2


1
j �1 − 
1��1 − �1 − 
1�n−i−j−1� .

�24�

�4� A loss occurs while measuring off qubits after a suc-
cessful fusion, the parity qubit is not disentangled, and it is
necessary to measure the resource in order to disentangle it.

M4 = �
i=1

n−1 1

2

1
2�i

�
j=0

n−i−1


1
j �1 − 
1�n−i−j

���1 − �1 − 
2�n��1 − �1 − 
2�n/2+1�� . �25�

�5� A loss occurs during fusion with the target qubit,
which is measured in order to disentangle it.

M5 = �
i=1

n−1 1

2

1
2�i


1
n−i�1 − 
1�1

2

1
2��1 − �1 − 
1�n/2+1� .

�26�

For most of these events, it is necessary to reencode the
logical control qubit afterwards to ensure it is fully protected.
This has a probability of success of PE.

Hence the probability of a no-progress outcome �M� is

M = PE�
k=1

4

Mk + M5. �27�

Here PE is the probability of successfully reencoding a logi-
cal qubit, as shown earlier. The probability of a progress
outcome �K� is

FIG. 6. Variation of the optimal value of q with n, for given
values of 
.
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FIG. 7. �Color online� Probability of success for active memory
using optimal q as a function of 
 and n.

HAYES, GILCHRIST, AND RALPH PHYSICAL REVIEW A 77, 012310 �2008�

012310-6



K = �
i=0

n−1 1

2

1
2�i


1
n−i	1

2

1
2 + �1 − 
1
2�

��1 − �1 − 
1�n−1��1 − �1 − 
2�n/2�
 . �28�

For a gate between two logical qubits, each made up of q
parity qubits, the overall probability of success is

Ptotal =  K

1 − M
�q

. �29�

To simplify the calculation, we again consider the case in
which the different parts of the system �sources, memory or
manipulation, detectors� contribute equally to the loss. We
represent the efficiency of each of these components as 
.
Using the equations shown, we can examine the way the
probability of success varies with this efficiency �Fig. 8�. It is
assumed the n and q code sizes for these logical qubits will
be optimized for reencoding, using the formula found earlier.
As the procedure for the CNOT utilizes repeated reencoding,
this encoding is also optimal for gate operations.

It can be seen that the threshold approaches a value of
90% efficiency for the CNOT gate. So far, we have assumed
an equal contribution to the loss from different components.
However, if we assume that one or more parts of the system
are lossless �e.g., perfect detectors�, the thresholds for the
rest of the system will drop accordingly.

V. RESOURCES

The procedures we have described require many en-
tangled resource states to be prepared separately for use in
computation. We assume our basic building blocks for these
resources to be maximally entangled Bell pairs, in the state
�0��2�. Such Bell pairs would have to be generated directly
from a heralded source, or created from single photons via a
KLM-style entangling gate �1�.

The first step in creating the resources required is to gen-
erate larger parity states, of the form �0��n�. These states are
built up iteratively by fusing smaller parity states together, in

a similar manner to that used to generate cluster states �8�.
Initially, it is necessary to use a type-I fusion gate, which acts
as a single-rail partial Bell measurement. As in the case of
the type-II fusion gate, both input qubits are mixed at a
50-50 beam splitter. However, only one arm is measured.
The type-I gate is successful when exactly one photon is
found in this arm. To achieve the desired fusion operation for
combining parity states, Hadamard gates are performed on
the inputs and output of the type-I fusion gate. This operation
has the advantage that only one qubit is measured, but a
failure means that both parity states are completely lost.

�H � H�f IH�0��n��0��m� → 	�0��m+n−1� �success�
− �failure� 
 .

�30�

As a result, the type-I fusion gate is used to create short
parity qubits, which are then joined in larger chains using
type-II fusion 2. The type-II fusion measures one qubit from
each state, but does not destroy the state in the event of
failure, allowing resources to be recycled. Additionally, if
one of the input qubits to the type-II gate is missing the loss
will be detected, reducing loss errors due to gates in the
entanglement construction.
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FIG. 8. �Color online� Probability of success for a logical CNOT

gate on redundancy qubits.

FIG. 9. �a� A representation of the two-qubit parity state used as
a starting resource, �0��2�. �b� The process by which larger parity
states are generated, using fusion gates between qubits.

FIG. 10. �a� A graphical representation of the state �0��0��n,2�

+ �1��1��n,2� �Eq. �31��. �b� A fusion between two such states. Once
the remainder of the parity qubit being encoded has been measured
in the computational basis, the resulting state is �0��0��n,3�

+ �1��1��n,3�.
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For efficient resource production, states of the form �0��5�

could be produced using type-I fusion, as shown in Fig. 9.
This would require an average of 16 Bell pairs. In order to
generate larger states, the type-II fusion gate should be used
to join multiple copies of the �0��5� state.

To create redundantly encoded resources, we begin by
performing a CNOT between a pair of physical qubits taken
from the states �0��n+1� and �0��n�. If successful, this will pro-
duce the state

�0��0��n,2� + �1��1��n,2�, �31�

which can be used to encode a qubit �	� in the logical state
�	��n,2�. To build a larger redundancy resource, we fuse mul-
tiple copies of the state given by Eq. �31�. Figure 10 shows
the form of such a resource.

VI. CONCLUSIONS

In this paper we have given a full description of a redun-
dancy code for performing circuit-based linear optical quan-
tum computing in the presence of photon loss. We have

found that the code is successful as a quantum memory if
each potential area of loss �the photon source, the memory
and operation section of the circuit, and the detectors� has an
efficiency of 82% or greater. For general computation in this
system, the threshold efficiency is 90%, as this is the mini-
mum efficiency which will allow all the gate operations to
work successfully. For both of these thresholds, an efficiency
less than the threshold in an area of loss can be tolerated if
other areas have correspondingly higher efficiencies. We
have restricted our consideration to photon loss, which has
enabled us to describe a quite complete error correction pro-
tocol for general quantum computation with a high loss-
tolerant threshold. However, neglecting other noise sources
is rather unrealistic. In future work we plan to address more
general error correction codes based on optical parity states.
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