708 research outputs found

    Extending SATPLAN to Multiple Agents

    Full text link

    Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state

    Get PDF
    Remodelling of the contractile apparatus within smooth muscle cells is an essential process that allows effective contractile activity over a wide range of cell lengths. The thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. The structure of this folded molecule has been controversial. Using negative stain electron microscopy of individual folded molecules from turkey gizzard we show they are more compact than previously described, with heads and the three segments of the folded tail closely packed. Smooth muscle heavy meromyosin (HMM), which lacks two-thirds of the tail, closely resembles the equivalent parts of whole myosin. Image processing reveals a characteristic head region morphology for both HMM and myosin whose features are identifiable by comparison with less compact molecules. The two heads associate asymmetrically: the tip of one motor domain touches the base of the other, resembling the blocked and free heads of this HMM when it forms 2-D crystals on lipid. The tail of HMM lies between the heads, contacting the blocked motor domain, unlike in the 2-D crystal. The tail of the intact myosin is bent sharply and consistently at two positions close to residues 1175 and 1535. The first bend position correlates with a skip in the coiled coil sequence, the second does not. The first segment runs between the heads from the head-tail junction. Unexpectedly, the other segments associate only with the blocked head rather than both heads, such that the second bend lies at a specific position near the C-lobe of the blocked head regulatory light chain. Quantitative analysis of tail flexibility shows that the single coiled coil of HMM has an apparent Young’s modulus of about 0.5 GPa. The folded tail of the intact molecule is less flexible indicating interactions between the segments. The folded tail does not modify the compact head arrangement but stabilises it, indicating a structural mechanism for the very low ATPase activity of the folded molecule

    Refining Our Understanding of the Flow Through Coronary Artery Branches; Revisiting Murray's Law in Human Epicardial Coronary Arteries

    Get PDF
    Background: Quantification of coronary blood flow is used to evaluate coronary artery disease, but our understanding of flow through branched systems is poor. Murray’s law defines coronary morphometric scaling, the relationship between flow (Q) and vessel diameter (D) and is the basis for minimum lumen area targets when intervening on bifurcation lesions. Murray’s original law (Q α D(P)) dictates that the exponent (P) is 3.0, whilst constant blood velocity throughout the system would suggest an exponent of 2.0. In human coronary arteries, the value of Murray’s exponent remains unknown. Aim: To establish the exponent in Murray’s power law relationship that best reproduces coronary blood flows (Q) and microvascular resistances (Rmicro) in a bifurcating coronary tree. Methods and Results: We screened 48 cases, and were able to evaluate inlet Q and Rmicro in 27 branched coronary arteries, taken from 20 patients, using a novel computational fluid dynamics (CFD) model which reconstructs 3D coronary anatomy from angiography and uses pressure-wire measurements to compute Q and Rmicro distribution in the main- and side-branches. Outputs were validated against invasive measurements using a Rayflow™ catheter. A Murray’s power law exponent of 2.15 produced the strongest correlation and closest agreement with inlet Q (zero bias, r = 0.47, p = 0.006) and an exponent of 2.38 produced the strongest correlation and closest agreement with Rmicro (zero bias, r = 0.66, p = 0.0001). Conclusions: The optimal power law exponents for Q and Rmicro were not 3.0, as dictated by Murray’s Law, but 2.15 and 2.38 respectively. These data will be useful in assessing patient-specific coronary physiology and tailoring revascularisation decisions

    Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease

    Get PDF
    Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CAD

    Validation of a novel numerical model to predict regionalized blood flow in the coronary arteries

    Get PDF
    Aims: Ischaemic heart disease results from insufficient coronary blood flow. Direct measurement of absolute flow (mL/min) is feasible, but has not entered routine clinical practice in most catheterization laboratories. Interventional cardiologists, therefore, rely on surrogate markers of flow. Recently, we described a computational fluid dynamics (CFD) method for predicting flow that differentiates inlet, side branch, and outlet flows during angiography. In the current study, we evaluate a new method that regionalizes flow along the length of the artery. Methods and results: Three-dimensional coronary anatomy was reconstructed from angiograms from 20 patients with chronic coronary syndrome. All flows were computed using CFD by applying the pressure gradient to the reconstructed geometry. Side branch flow was modelled as a porous wall boundary. Side branch flow magnitude was based on morphometric scaling laws with two models: a homogeneous model with flow loss along the entire arterial length; and a regionalized model with flow proportional to local taper. Flow results were validated against invasive measurements of flow by continuous infusion thermodilution (Coroventis™, Abbott). Both methods quantified flow relative to the invasive measures: homogeneous (r 0.47, P 0.006; zero bias; 95% CI -168 to +168 mL/min); regionalized method (r 0.43, P 0.013; zero bias; 95% CI -175 to +175 mL/min). Conclusion: During angiography and pressure wire assessment, coronary flow can now be regionalized and differentiated at the inlet, outlet, and side branches. The effect of epicardial disease on agreement suggests the model may be best targeted at cases with a stenosis close to side branches.</p

    A population-based study of transformed marginal zone lymphoma:identifying outcome-related characteristics

    Get PDF
    Histological transformation of marginal zone lymphoma (tMZL) into diffuse large B-cell lymphoma is associated with poor outcomes. Clinical characteristics associated with transformation risk and outcome after transformation are largely unknown due to scarcity of data. In this population-based study, competing risk analyses were performed to elucidate clinical characteristics associated with developing transformation among 1793 MZL patients using the Netherlands Cancer Registry. Cox regression analyses were performed to elucidate clinical characteristics associated with risk of relapse and mortality after transformation. Transformation occurred in 75 (4%) out of 1793 MZL patients. Elevated LDH and nodal MZL subtype at MZL diagnosis were associated with an increased risk, and radiotherapy with a reduced risk of developing tMZL. Most tMZL patients received R-(mini)CHOP (n = 53, 71%). Age &gt;60 years and (immuno)chemotherapy before transformation were associated with an increased risk of relapse and mortality after transformation. Two-year progression-free survival (PFS) and overall survival (OS) were 66% (95% CI 52-77%) and 75% (95% CI 62-85%) for R-(mini)CHOP-treated tMZL patients, as compared to a PFS and OS both of 41% (95% CI 19-63%) for patients treated otherwise. Our study offers comprehensive insights into characteristics associated with transformation and survival after transformation, thereby optimizing guidelines and patient counseling.</p

    FMAP: Distributed Cooperative Multi-Agent Planning

    Full text link
    This paper proposes FMAP (Forward Multi-Agent Planning), a fully-distributed multi-agent planning method that integrates planning and coordination. Although FMAP is specifically aimed at solving problems that require cooperation among agents, the flexibility of the domain-independent planning model allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents jointly explore the plan space by building up refinement plans through a complete and flexible forward-chaining partial-order planner. The search is guided by h D T G , a novel heuristic function that is based on the concepts of Domain Transition Graph and frontier state and is optimized to evaluate plans in distributed environments. Agents in FMAP apply an advanced privacy model that allows them to adequately keep private information while communicating only the data of the refinement plans that is relevant to each of the participating agents. Experimental results show that FMAP is a general-purpose approach that efficiently solves tightly-coupled domains that have specialized agents and cooperative goals as well as loosely-coupled problems. Specifically, the empirical evaluation shows that FMAP outperforms current MAP systems at solving complex planning tasks that are adapted from the International Planning Competition benchmarks.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, the Valencian Prometeo project II/2013/019, and the FPI-UPV scholarship granted to the first author by the Universitat Politecnica de Valencia.Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). FMAP: Distributed Cooperative Multi-Agent Planning. Applied Intelligence. 41(2):606-626. https://doi.org/10.1007/s10489-014-0540-2S606626412Benton J, Coles A, Coles A (2012) Temporal planning with preferences and time-dependent continuous costs. In: Proceedings of the 22nd international conference on automated planning and scheduling (ICAPS). AAAI, pp 2–10Borrajo D. (2013) Multi-agent planning by plan reuse. In: Proceedings of the 12th international conference on autonomous agents and multi-agent systems (AAMAS). IFAAMAS, pp 1141–1142Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). AAAI, pp 28–35Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiagent Syst 19(3):297–331Bresina J, Dearden R, Meuleau N, Ramakrishnan S, Smith D, Washington R (2002) Planning under continuous time and resource uncertainty: a challenge for AI. In: Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI). Morgan Kaufmann, pp 77–84Cox J, Durfee E (2009) Efficient and distributable methods for solving the multiagent plan coordination problem. Multiagent Grid Syst 5(4):373–408Crosby M, Rovatsos M, Petrick R (2013) Automated agent decomposition for classical planning. In: Proceedings of the 23rd international conference on automated planning and scheduling (ICAPS). AAAI, pp 46–54Dimopoulos Y, Hashmi MA, Moraitis P (2012) μ-satplan: Multi-agent planning as satisfiability. Knowl-Based Syst 29:54–62Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208Gerevini A, Haslum P, Long D, Saetti A, Dimopoulos Y (2009) Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif Intell 173(5-6):619–668Ghallab M, Nau D, Traverso P (2004) Automated planning. Theory and practice. Morgan KaufmannGünay A, Yolum P (2013) Constraint satisfaction as a tool for modeling and checking feasibility of multiagent commitments. Appl Intell 39(3):489–509Helmert M (2004) A planning heuristic based on causal graph analysis. In: Proceedings of the 14th international conference on automated planning and scheduling ICAPS. AAAI, pp 161–170Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302Jannach D, Zanker M (2013) Modeling and solving distributed configuration problems: a CSP-based approach. IEEE Trans Knowl Data Eng 25(3):603–618Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121Kala R, Warwick K (2014) Dynamic distributed lanes: motion planning for multiple autonomous vehicles. Appl Intell:1–22Koehler J, Ottiger D (2002) An AI-based approach to destination control in elevators. AI Mag 23(3):59–78Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical reportvan der Krogt R (2009) Quantifying privacy in multiagent planning. Multiagent Grid Syst 5(4):451–469Kvarnström J (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi-Agent Syst 9(1–2):87–143Long D, Fox M (2003) The 3rd international planning competition: results and analysis. J Artif Intell Res 20:1–59Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 1323–1330O’Brien P, Nicol R (1998) FIPA - towards a standard for software agents. BT Tech J 16(3):51–59Öztürk P, Rossland K, Gundersen O (2010) A multiagent framework for coordinated parallel problem solving. Appl Intell 33(2):132–143Pal A, Tiwari R, Shukla A (2013) Communication constraints multi-agent territory exploration task. Appl Intell 38(3):357–383Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177de la Rosa T, García-Olaya A, Borrajo D (2013) A case-based approach to heuristic planning. Appl Intell 39(1):184–201Sapena O, Onaindia E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Appl Intell 29(1):90–109Sapena O, Onaindia E, Garrido A, Arangú M (2008) A distributed CSP approach for collaborative planning systems. Eng Appl Artif Intell 21(5):698–709Serrano E, Such J, Botía J, García-Fornes A (2013) Strategies for avoiding preference profiling in agent-based e-commerce environments. Appl Intell:1–16Smith D, Frank J, Jónsson A (2000) Bridging the gap between planning and scheduling. Knowl Eng Rev 15(1):47–83Such J, García-Fornes A, Espinosa A, Bellver J (2012) Magentix2: a privacy-enhancing agent platform. Eng Appl Artif Intell:96–109Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145Torreño A, Onaindia E, Sapena O (2012) An approach to multi-agent planning with incomplete information. In: Proceedings of the 20th European conference on artificial intelligence (ECAI), vol 242. IOS Press, pp 762–767Torreño A, Onaindia E, Sapena O (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Van Der Krogt R, De Weerdt M (2005) Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). AAAI, pp 161–170de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiagent Grid Syst 5(4):345– 355Yokoo M, Durfee E, Ishida T, Kuwabara K (1998) The distributed constraint satisfaction problem: formalization and algorithms. IEEE Trans Knowl Data Eng 10(5):673–685Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th international joint conference conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 798–80
    corecore